【发布时间】:2023-07-23 09:53:01
【问题描述】:
我有一个 MNIST CNN。从 MNIST 数据集进行网络学习和训练,并给出每个数字(0 到 9)的 10 个概率向量,其总和为 1(当然使用 softmax)。我试图改变一种方式,我将为每个数字获得十个概率,例如,所选图像到 b 1 的概率是 0.23,所以它不是 1 的概率是 0.67,(总和为 1但对于 10 位数字)。所以我需要的是 10 种不同的 softmax 激活,但我不明白该怎么做。 这是计算 10 个加起来为 1 的概率并最终给出准确度计算的原始代码。 有没有办法改变代码为每个数字提供 10 个 softmax?
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import tensorflow as tf
tf.logging.set_verbosity(tf.logging.INFO)
def cnn_model_fn(features, labels, mode):
input_layer = tf.reshape(features["x"], [-1, 28, 28, 1])
conv1 = tf.layers.conv2d(inputs=input_layer, filters=32,kernel_size[5,5],
padding="same", activation=tf.nn.relu)
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2],strides=2)
conv2 = tf.layers.conv2d(inputs=pool1, filters=64, kernel_size=[5, 5],
padding="same", activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2],strides=2)
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat,
units=1024,activation=tf.nn.relu)
dropout = tf.layers.dropout(inputs=dense, rate=0.4, training=mode ==
tf.estimator.ModeKeys.TRAIN)
logits = tf.layers.dense(inputs=dropout, units=10)
predictions = {
"classes": tf.argmax(input=logits, axis=1),
"probabilities": tf.nn.softmax(logits, name="softmax_tensor")}
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.sparse_softmax_cross_entropy(labels=labels,
logits=logits)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(
loss=loss,
global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss,
train_op=train_op)
eval_metric_ops = {
"accuracy": tf.metrics.accuracy(
labels=labels, predictions=predictions["classes"])}
return tf.estimator.EstimatorSpec(
mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
def main(unused_argv):
# Load training and eval data
mnist = tf.contrib.learn.datasets.load_dataset("mnist")
train_data = mnist.train.images # Returns np.array
train_labels = np.asarray(mnist.train.labels, dtype=np.int32)
eval_data = mnist.test.images # Returns np.array
eval_labels = np.asarray(mnist.test.labels, dtype=np.int32)
# Create the Estimator
mnist_classifier = tf.estimator.Estimator(model_fn=cnn_model_fn,
model_dir="/tmp/mnist_convnet_model")
# Set up logging for predictions
# Log the values in the "Softmax" tensor with label "probabilities"
tensors_to_log = {"probabilities": "softmax_tensor"}
logging_hook = tf.train.LoggingTensorHook(
tensors=tensors_to_log, every_n_iter=50)
# Train the model
train_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": train_data},
y=train_labels,
batch_size=100,
num_epochs=None,
shuffle=True)
mnist_classifier.train(
input_fn=train_input_fn,
steps=20000,
hooks=[logging_hook])
# Evaluate the model and print results
eval_input_fn = tf.estimator.inputs.numpy_input_fn(
x={"x": eval_data},
y=eval_labels,
num_epochs=1,
shuffle=False)
eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
print(eval_results)
if __name__ == "__main__":
tf.app.run()
【问题讨论】:
-
你的问题中哪一部分是关于 C 语言的?
-
我认为他们可能是懂 c 语言的人也懂和熟悉 python
-
这并不是一个 C 问题。标签应描述问题,而不是读者。使用不相关的标签被视为垃圾邮件。
标签: python c tensorflow mnist softmax