讨论与代码
这可能是一种使用 bsxfun(@plus 的方法,它有助于以函数格式编码的 linear indexing -
function out = bsxfun_linidx(A,a)
%// Get sizes
[A_nrows,A_ncols] = size(A);
N_a = numel(a);
%// Linear indexing offsets between 2 columns in a block & between 2 blocks
off1 = A_nrows*N_a;
off2 = off1*A_ncols+A_nrows;
%// Get the matrix multiplication results
vals = bsxfun(@times,A,permute(a,[1 3 2])); %// OR vals = A(:)*a_arr;
%// Get linear indices for the first block
block1_idx = bsxfun(@plus,[1:A_nrows]',[0:A_ncols-1]*off1); %//'
%// Initialize output array base on fast pre-allocation inspired by -
%// http://undocumentedmatlab.com/blog/preallocation-performance
out(A_nrows*N_a,A_ncols*N_a) = 0;
%// Get linear indices for all blocks and place vals in out indexed by them
out(bsxfun(@plus,block1_idx(:),(0:N_a-1)*off2)) = vals;
return;
如何使用: 要使用上面列出的功能代码,假设您将a1、a2、a3、...、an 存储在一个向量a,然后执行类似out = bsxfun_linidx(A,a) 的操作以在out 中获得所需的输出。
基准测试
本部分将此答案中列出的方法与其他答案中列出的其他两种方法进行比较或基准测试,以了解运行时性能。
其他答案被转换为函数形式,像这样 -
function B = bsxfun_blkdiag(A,a)
B = bsxfun(@times, A, reshape(a,1,1,[])); %// step 1: compute products as a 3D array
B = mat2cell(B,size(A,1),size(A,2),ones(1,numel(a))); %// step 2: convert to cell array
B = blkdiag(B{:}); %// step 3: call blkdiag with comma-separated list from cell array
和,
function out = kron_diag(A,a_arr)
out = kron(diag(a_arr),A);
为了比较,测试了A和a的四种尺寸组合,分别是-
-
A 作为 500 x 500 和 a 作为 1 x 10
-
A 作为200 x 200 和a 作为1 x 50
-
A 作为100 x 100 和a 作为1 x 100
-
A 作为50 x 50 和a 作为1 x 200
下面列出了使用的基准测试代码 -
%// Datasizes
N_a = [10 50 100 200];
N_A = [500 200 100 50];
timeall = zeros(3,numel(N_a)); %// Array to store runtimes
for iter = 1:numel(N_a)
%// Create random inputs
a = randi(9,1,N_a(iter));
A = rand(N_A(iter),N_A(iter));
%// Time the approaches
func1 = @() kron_diag(A,a);
timeall(1,iter) = timeit(func1); clear func1
func2 = @() bsxfun_blkdiag(A,a);
timeall(2,iter) = timeit(func2); clear func2
func3 = @() bsxfun_linidx(A,a);
timeall(3,iter) = timeit(func3); clear func3
end
%// Plot runtimes against size of A
figure,hold on,grid on
plot(N_A,timeall(1,:),'-ro'),
plot(N_A,timeall(2,:),'-kx'),
plot(N_A,timeall(3,:),'-b+'),
legend('KRON + DIAG','BSXFUN + BLKDIAG','BSXFUN + LINEAR INDEXING'),
xlabel('Datasize (Size of A) ->'),ylabel('Runtimes (sec)'),title('Runtime Plot')
%// Plot runtimes against size of a
figure,hold on,grid on
plot(N_a,timeall(1,:),'-ro'),
plot(N_a,timeall(2,:),'-kx'),
plot(N_a,timeall(3,:),'-b+'),
legend('KRON + DIAG','BSXFUN + BLKDIAG','BSXFUN + LINEAR INDEXING'),
xlabel('Datasize (Size of a) ->'),ylabel('Runtimes (sec)'),title('Runtime Plot')
我最终获得的运行时图是 -
结论:如您所见,可以研究基于bsxfun 的任何一种方法,具体取决于您处理的数据大小类型!