pytorch文章/教程

PyTorch是一个开源的Python机器学习库,基于Torch,用于自然语言处理等应用程序。PyTorch的前身是Torch,其底层和Torch框架一样,但是使用Python重新写了很多内容,不仅更加灵活,支持动态图,而且提供了Python接口。它是由Torch7团队开发,是一个以Python优先的深度学习框架,不仅能够实现强大的GPU加速,同时还支持动态神经网络,这是很多主流深度学习框架比如Tensorflow等都不支持的。

pytorch实现mnist手写彩色数字识别

目录 前言 一 前期工作 1.设置GPU或者cpu  2.导入数据 二 数据预处理 1.加载数据 2.可视化数据 3.再次检查数据  三 搭建网络 四 训练模型 1.设置学习率 2.模型训练 五 模型评估 1.Loss和Accuracy图  2.总结 前言 环境: »

Python+Pytorch实战之彩色图片识别

目录 四、 结果可视化 一、 前期准备1. 设置GPU如果设备上支持GPU就使用GPU,否则使用CPU import torchimport torch.nn as nnimport matplotlib.pyplot as pltimport torchvision device = tor »

了解Pytorch|Get Started with PyTorch

一个开源的机器学习框架,加速了从研究原型到生产部署的路径。 !pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple import torch import numpy as np Basics 就像Tensorflow一样,我们也 ... »

PyTorch中torch.utils.data.DataLoader实例详解

1、dataset:(数据类型 dataset) 输入的数据类型,这里是原始数据的输入。PyTorch内也有这种数据结构。 2、batch_size:(数据类型 int) 批训练数据量的大小,根据具体情况设置即可(默认:1)。PyTorch训练模型时调用数据不是一行一行进行的(这样太没效率), »

在 Windows 上为 Pytorch 和 Pytorch Geometric 构建 GPU 环境

介绍 这是我的第一篇文章。在研究机器学习时,我在使用 Pytorch 和 Pytorch Geometric 构建 GPU 环境时遇到了很多麻烦,所以我想留下我构建环境所做的工作。我希望这可以帮助任何处于类似情况的人。 环境 操作系统 语 GPU Windows 11 家庭 64 位 蟒蛇 »

PyTorch开源图像分类工具箱MMClassification详解

MMClassification是一个基于PyTorch的开源图像分类工具箱,是OpenMMLab项目的一部分,源码传送门,最新发布版本为v0.23.2,License为Apache-2.0。它支持在Windows、Linux和Mac上运行。 1.安装:使用conda安装 (1).创建openm »

Pytorch中的tensor数据结构实例代码分析

这篇文章主要介绍了Pytorch中的tensor数据结构实例代码分析的相关知识,内容详细易懂,操作简单快捷,具有一定借鉴价值,相信大家阅读完这篇Pytorch中的tensor数据结构实例代码分析文章都会有所收获,下面我们一起来看看吧。 torch.Tensor tor »

基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像

摘要:本文中我们介绍的 AnimeGAN 就是 GitHub 上一款爆火的二次元漫画风格迁移工具,可以实现快速的动画风格迁移。 本文分享自华为云社区《AnimeGANv2 照片动漫化:如何基于 PyTorch 和神经网络给 GirlFriend 制作漫画风头像?【秋招特训】》,作者:白鹿第一帅 。 ... »

huaweiyun

详解Pytorch中的tensor数据结构

目录 torch.Tensor Tensor 数据类型 view 和 reshape 的区别 Tensor 与 ndarray 创建 Tensor 传入维度的方法 torch.Tensor torch.Tensor 是一种包含单一数据类型元素的多维矩阵,类似于 numpy 的 array。 »

基于anaconda3的Pytorch环境搭建

安装anaconda3,版本选择新的就行 打开anaconda prompt创建虚拟环境conda create -n pytorch_gpu python=3.9,pytorch_gpu是环境名称,可自行选取,python=3.9是选择的python版本,可自行选择,conda会自动下载选择的py ... »

sxq-blog

PyTorch实现MNIST数据集手写数字识别详情

目录 一、PyTorch是什么? 二、程序示例 1.引入必要库 2.下载数据集 3.加载数据集 4.搭建CNN模型并实例化 5.交叉熵损失函数损失函数及SGD算法优化器 6.训练函数 7.测试函数 8.运行 三、总结 前言: 本篇文章基于卷积神经网络CNN,使用PyTorch实现MNI »

PyTorch中的CUDA操作

CUDA(Compute Unified Device Architecture)是NVIDIA推出的异构计算平台,PyTorch中有专门的模块torch.cuda来设置和运行CUDA相关操作。本地安装环境为Windows10,Python3.7.8和CUDA 11.6,安装PyTorch最新稳定版 ... »

shengshengwang

PyTorch中Tensor和tensor的区别是什么

这篇文章主要介绍“PyTorch中Tensor和tensor的区别是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中Tensor和tensor的区别是什么”文章能帮助大家解决问题。 Tensor和tensor的区别 本文列举的框架源码基于P »

Broadcast广播机制在Pytorch Tensor Numpy中如何使用

本篇内容介绍了“Broadcast广播机制在Pytorch Tensor Numpy中如何使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成! 1.什么是广播机制 根据线性代数的运算规则我们知道,矩阵运 »

Pytorch分布式训练

用单机单卡训练模型的时代已经过去,单机多卡已经成为主流配置。如何最大化发挥多卡的作用呢?本文介绍Pytorch中的DistributedDataParallel方法。 ... »

Pytorch 中 tensor的维度拼接

torch.stack() 和 torch.cat() 都可以按照指定的维度进行拼接,但是两者也有区别,torch.satck() 是增加新的维度进行堆叠,即其维度拼接后会增加一个维度;而torch.cat() 是在原维度上进行堆叠,即其维度拼接后的维度个数和原来一致。具体说明如下: torch.s ... »

jack-nie-23

Pytorch Tensor 维度的扩充和压缩

维度扩展 x.unsqueeze(n) 在 n 号位置添加一个维度 例子: import torch x = torch.rand(3,2) x1 = x.unsqueeze(0) # 在第一维的位置添加一个维度 x2 = x.unsqueeze(1) # 在第二维的位置添加一个维度 x3 = x. ... »

jack-nie-23

pytorch实现autoencoder

 关于autoencoder的内容简介可以参考这一篇博客,可以说写的是十分详细了https://sherlockliao.github.io/2017/06/24/vae/   盗图一张,自动编码器讲述的是对于一副输入的图像,或者是其他的信号,经过一系列操作,比如卷积,或者linear变换,变换得到一个向量,这个向量就叫做对这个图像的编码,这个过程就叫做encoder,对于一个特定的编码,经过一 »

pytorch index_select()函数

函数实现从当前张量中从某个维度选择一部分序号的张量 tensor.select_index(dim, index) 对于一个二维张量feature: 第一个参数 参数0表示按行索引,1表示按列进行索引 第二个参数 是一个整数类型的一维tensor,就是索引的序号 二维张量举例: 三维张量举例: 另一种使用方式: torch.select_index(tensor, dim, index »

Pytorch-tensor的创建,索引,切片

1.基本概念 标量:就是一个数,是0维的,只有大小,没有方向 向量:是1*n的一列数,是1维的,有大小,也有方向 张量:是n*n的一堆数,是2维的,n个向量合并而成 2.a.size(),a.shape(),a.numel(),a.dim()的区别 a.size():输出a的某一维度中元素的个数,若未指定维度,则计算所有元素的个数 a.shape():输出a数组各维度的长度信息, »