【发布时间】:2023-11-28 07:37:01
【问题描述】:
我有这个数据集:
structure(list(time = c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15), ttt1_1 = c(0, 15, 20, 30, 40, 50, 60, 70, 80, 90,
130, 160, 240, 320, 450), ttt1_2 = c(0, 17, 22, 34, 50, 50, 65,
75, 90, 120, 160, 200, 300, 400, 500), ttt1_3 = c(0, 19, 25,
36, 47, 60, 70, 86, 110, 130, 195, 240, 360, 480, 650), ttt2_1 = c(0,
45, 60, 90, 120, 150, 210, 245, 280, 315, 455, 560, 720, 960,
1350), ttt2_2 = c(0, 51, 66, 102, 130, 150, 228, 262, 315, 420,
560, 700, 900, 1200, 1500), ttt2_3 = c(0, 57, 75, 108, 141, 180,
245, 301, 385, 455, 683, 840, 1080, 1440, 1950), ttt3_1 = c(0,
90, 120, 180, 240, 300, 420, 490, 560, 630, 910, 1120, 1440,
1920, 2700), ttt3_2 = c(0, 102, 132, 204, 300, 300, 455, 525,
630, 840, 1120, 1400, 1800, 2400, 3000), ttt3_3 = c(0, 114, 150,
216, 282, 360, 490, 602, 770, 910, 1365, 1680, 2160, 2880, 3900
)), row.names = c(NA, 15L), class = "data.frame")
看起来像这样:
> datapoids
time ttt1_1 ttt1_2 ttt1_3 ttt2_1 ttt2_2 ttt2_3 ttt3_1 ttt3_2 ttt3_3
1 1 0 0 0 0 0 0 0 0 0
2 2 15 17 19 45 51 57 90 102 114
3 3 20 22 25 60 66 75 120 132 150
4 4 30 34 36 90 102 108 180 204 216
5 5 40 50 47 120 130 141 240 300 282
6 6 50 50 60 150 150 180 300 300 360
7 7 60 65 70 210 228 245 420 455 490
8 8 70 75 86 245 262 301 490 525 602
9 9 80 90 110 280 315 385 560 630 770
10 10 90 120 130 315 420 455 630 840 910
11 11 130 160 195 455 560 683 910 1120 1365
12 12 160 200 240 560 700 840 1120 1400 1680
13 13 240 300 360 720 900 1080 1440 1800 2160
14 14 320 400 480 960 1200 1440 1920 2400 2880
15 15 450 500 650 1350 1500 1950 2700 3000 3900
此数据集表示 9 个人(3 个不同组中的 3 个人:ttt1、ttt2、ttt3)体重随时间的变化(第一列 = 以天为单位的经过时间)。
首先,我正在尝试绘制这种图表(使用 Graphpad Prism 完成):
但到目前为止,我唯一设法得到的是这个(我一次只能绘制一列,我想绘制 3 列的平均值(例如 ttt1_1、ttt1_2、ttt1_3),然后执行对于我的三个组(ttt1、ttt2、ttt3)。
ggplot(data=datapoids, aes(x=time,y=ttt3_1)) +
geom_point(size=2)
这给了我: plot with ggplot2
知道如何使用 ggplot2 获得我使用 GraphPad 所拥有的东西吗? 任何建议都会有很大帮助!
更新 1
我改变了我的数据框的组织方式,如下所示:
> dput(head(datapoids, 60))
structure(list(time = c(1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 5, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10, 10, 10, 11, 11,
11, 12, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15), group = c(1,
2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
2, 3), m1 = c(0, 0, 0, 15, 45, 90, 20, 60, 120, 30, 90, 180,
40, 120, 240, 50, 150, 300, 60, 210, 420, 70, 245, 490, 80, 280,
560, 90, 315, 630, 130, 455, 910, 160, 560, 1120, 240, 720, 1440,
320, 960, 1920, 450, 1350, 2700), m2 = c(0, 0, 0, 17, 51, 102,
22, 66, 132, 34, 102, 204, 50, 130, 300, 50, 150, 300, 65, 228,
455, 75, 262, 525, 90, 315, 630, 120, 420, 840, 160, 560, 1120,
200, 700, 1400, 300, 900, 1800, 400, 1200, 2400, 500, 1500, 3000
), m3 = c(0, 0, 0, 19, 57, 114, 25, 75, 150, 36, 108, 216, 47,
141, 282, 60, 180, 360, 70, 245, 490, 86, 301, 602, 110, 385,
770, 130, 455, 910, 195, 683, 1365, 240, 840, 1680, 360, 1080,
2160, 480, 1440, 2880, 650, 1950, 3900)), row.names = c(NA, -45L
), class = c("tbl_df", "tbl", "data.frame"))
> datapoids
# A tibble: 45 x 5
time group m1 m2 m3
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 0 0 0
2 1 2 0 0 0
3 1 3 0 0 0
4 2 1 15 17 19
5 2 2 45 51 57
6 2 3 90 102 114
7 3 1 20 22 25
8 3 2 60 66 75
9 3 3 120 132 150
10 4 1 30 34 36
# ... with 35 more rows
第 1 列代表经过的时间,第 2 列是组,第 3-4-5 列是每个组中的三个人。
到目前为止,我设法在图表上获得了三组数据,但每次仅针对 1 个人,我无法获得平均值 +/- SD...
ggplot(datapoids, aes(x = time, y = m1, group = group)) +
geom_point()
three groups but only one individual per group
更新 2
好的,这是另一个更新。 我已将我的数据集格式化为如下所示:
> print.data.frame(datapoids)
weight group time
1 0 1 1
2 0 1 1
3 0 1 1
4 0 2 1
5 0 2 1
6 0 2 1
7 0 3 1
8 0 3 1
9 0 3 1
10 15 1 2
11 17 1 2
12 19 1 2
13 45 2 2
14 51 2 2
15 57 2 2
16 90 3 2
17 102 3 2
18 114 3 2
19 20 1 3
20 22 1 3
21 25 1 3
22 60 2 3
23 66 2 3
24 75 2 3
25 120 3 3
26 132 3 3
27 150 3 3
28 30 1 4
29 34 1 4
30 36 1 4
31 90 2 4
32 102 2 4
33 108 2 4
34 180 3 4
35 204 3 4
36 216 3 4
37 40 1 5
38 50 1 5
39 47 1 5
40 120 2 5
41 130 2 5
42 141 2 5
43 240 3 5
44 300 3 5
45 282 3 5
46 50 1 6
47 50 1 6
48 60 1 6
49 150 2 6
50 150 2 6
51 180 2 6
52 300 3 6
53 300 3 6
54 360 3 6
55 60 1 7
56 65 1 7
57 70 1 7
58 210 2 7
59 228 2 7
60 245 2 7
61 420 3 7
62 455 3 7
63 490 3 7
64 70 1 8
65 75 1 8
66 86 1 8
67 245 2 8
68 262 2 8
69 301 2 8
70 490 3 8
71 525 3 8
72 602 3 8
73 80 1 9
74 90 1 9
75 110 1 9
76 280 2 9
77 315 2 9
78 385 2 9
79 560 3 9
80 630 3 9
81 770 3 9
82 90 1 10
83 120 1 10
84 130 1 10
85 315 2 10
86 420 2 10
87 455 2 10
88 630 3 10
89 840 3 10
90 910 3 10
91 130 1 11
92 160 1 11
93 195 1 11
94 455 2 11
95 560 2 11
96 683 2 11
97 910 3 11
98 1120 3 11
99 1365 3 11
100 160 1 12
101 200 1 12
102 240 1 12
103 560 2 12
104 700 2 12
105 840 2 12
106 1120 3 12
107 1400 3 12
108 1680 3 12
109 240 1 13
110 300 1 13
111 360 1 13
112 720 2 13
113 900 2 13
114 1080 2 13
115 1440 3 13
116 1800 3 13
117 2160 3 13
118 320 1 14
119 400 1 14
120 480 1 14
121 960 2 14
122 1200 2 14
123 1440 2 14
124 1920 3 14
125 2400 3 14
126 2880 3 14
127 450 1 15
128 500 1 15
129 650 1 15
130 1350 2 15
131 1500 2 15
132 1950 2 15
133 2700 3 15
134 3000 3 15
135 3900 3 15
> dput(head(datapoids, 10000000))
structure(list(weight = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 15, 17,
19, 45, 51, 57, 90, 102, 114, 20, 22, 25, 60, 66, 75, 120, 132,
150, 30, 34, 36, 90, 102, 108, 180, 204, 216, 40, 50, 47, 120,
130, 141, 240, 300, 282, 50, 50, 60, 150, 150, 180, 300, 300,
360, 60, 65, 70, 210, 228, 245, 420, 455, 490, 70, 75, 86, 245,
262, 301, 490, 525, 602, 80, 90, 110, 280, 315, 385, 560, 630,
770, 90, 120, 130, 315, 420, 455, 630, 840, 910, 130, 160, 195,
455, 560, 683, 910, 1120, 1365, 160, 200, 240, 560, 700, 840,
1120, 1400, 1680, 240, 300, 360, 720, 900, 1080, 1440, 1800,
2160, 320, 400, 480, 960, 1200, 1440, 1920, 2400, 2880, 450,
500, 650, 1350, 1500, 1950, 2700, 3000, 3900), group = structure(c(1L,
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L,
3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L,
3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L,
2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L,
1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L,
1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L,
3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L,
2L, 3L, 3L, 3L, 1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 1L, 1L, 1L,
2L, 2L, 2L, 3L, 3L, 3L), .Label = c("1", "2", "3"), class = "factor"),
time = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 10L,
10L, 10L, 10L, 10L, 10L, 10L, 11L, 11L, 11L, 11L, 11L, 11L,
11L, 11L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L,
13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 13L, 14L, 14L, 14L,
14L, 14L, 14L, 14L, 14L, 14L, 15L, 15L, 15L, 15L, 15L, 15L,
15L, 15L, 15L), .Label = c("1", "2", "3", "4", "5", "6",
"7", "8", "9", "10", "11", "12", "13", "14", "15"), class = "factor")), row.names = c(NA,
-135L), class = c("tbl_df", "tbl", "data.frame"))
还有这个:
ggplot(datapoids, aes(x = time, y = weight)) +
geom_boxplot(aes(fill=group), position="identity") +
geom_point()
我设法得到了这个(这还不意味着 +/- SD):
【问题讨论】:
-
由于所有初始测量的重量都为零,所以第一次是“零天”——也就是说,第一次测量是在没有时间过去的情况下完成的吗?
-
是的,第一个时间点是第0天;是的,在开始治疗前进行的第一次测量
-
ggplot(datapoids, aes(x = as.numeric(time), y = weight, color = group)) + stat_summary(fun.data = mean_sdl, fun.args = list(mult = 1))第一部分。 -
感谢您指出“stat_sumary”函数,我刚刚在stat_sumary 部分更改了“color = group”的位置,它起作用了!如果可以的话,我会将其发布在第一个帖子下的答案中,并为我的第二个问题创建另一个帖子(绘制组之间的非线性回归并进行比较)
标签: r ggplot2 compare curve-fitting non-linear-regression