许多机器学习算法都有一个假设:输入数据要是线性可分的。感知机算法必须针对完全线性可分数据才能收敛。考虑到噪音,Adalien、逻辑斯蒂回归和SVM并不会要求数据完全线性可分。
但是现实生活中有大量的非线性数据,此时用于降维的线性转换手段比如PCA和LDA效果就不会太好。这一节我们学习PCA的核化版本,核PCA。这里的"核"与核SVM相近。 运用核PCA,我们能将非线性可分的数据转换到新的、低维度的特征子空间,然后运用线性分类器解决。
核函数和核技巧
还记得在核SVM那里,我们讲过解决非线性问题的手段是将他们映射到新的高维特征空间,此时数据在高维空间线性可分。为了将数据映射到高维k空间,我们定义了非线性映射函数

我们可以把核函数的功能理解为:通过创造出原始特征的一些非线性组合,然后将原来的d维度数据集映射到k维度特征空间,d<k。举个例子,特征向量
同理核PCA的工作机制:通过核PCA的非线性映射,将数据转换到一个高维度空间,然后在这个高维度空间运用标准PCA重新将数据映射到一个比原来还低的空间,最后就可以用线性分类器解决问题了。不过,这种方法涉及到两次映射转换,计算成本非常高,由此引出了核技巧(kernel trick)。
使用核技巧,我们能在原始特征空间直接计算两个高维特征向量的相似性(不需要先特征映射,再计算相似性)。
在介绍核技巧前,我们先回顾标准PCA的做法。我们按照如下公式计算两个特征k和j的协方差:
由于我们对数据已做过标准化处理,特征平均值为0,上式等价于:
同样,我们能够得到协方差矩阵:
Bernhard Scholkopf(B. Scholkopf, A.Smola, and K.R. Muller. Kernel Principal Component Analysis. pages 583-588, 1997)得到了上式的泛化形式,用非线性特征组合
为了从协方差矩阵中得到特征向量(主成分),我们必须求解下面的等式:
其中,是协方差矩阵
的特征值和特征向量,

我们求解核矩阵:
首先,我们写出协方差矩阵的矩阵形式,
我们将特征向量写作:
由于
等式两边左乘
这里的
回忆核SVM我们使用核技巧避免了直接计算
核PCA同样不需要像标准PCA那样构建转换矩阵,我们使用核函数代替计算^T)
常用的核函数有:
- 多项式核:
,
是阈值,

- 双曲正切(sigmoid)核:
- 径向基函数核(高斯核):
现在总结一下核PCA的步骤,以RBF核为例:
1 计算核(相似)矩阵k,也就是计算任意两个训练样本:
得到K:
举个例子,如训练集有100个样本,则对称核矩阵K的维度是100*100。
2 对核矩阵K进行中心化处理:
其中,是n*n的矩阵,n=训练集样本数,
中每个元素都等于

3 计算
第2步为什么要计算? 因为在PCA我们总是处理标准化的数据,也就是特征的平均值为0。当我们用非线性特征组合

Python机器学习中文版目录(http://www.aibbt.com/a/20787.html)
转载请注明出处,Python机器学习(http://www.aibbt.com/a/pythonmachinelearning/)


















