希望这会有所帮助。您可以看到它不仅需要输入/输出,还需要第二个输入。我还使用超过 1 个输出,因此您可以将信息传入和传出神经网络。我希望您会对这个示例的可定制性感到振奋。
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.keras.layers import Dense
from tensorflow.keras import Model
from sklearn.datasets import load_iris
from functools import partial
tf.keras.backend.set_floatx('float64')
iris, target = load_iris(return_X_y=True)
X = iris[:, :3]
y = iris[:, 3]
z = target
onehot = partial(tf.one_hot, depth=3)
dataset = tf.data.Dataset.from_tensor_slices((X, y, z)).shuffle(150)
train_ds = dataset.take(120).shuffle(10).\
batch(8).map(lambda a, b, c: (a, b, onehot(c)))
test_ds = dataset.skip(120).take(30).shuffle(10).\
batch(8).map(lambda a, b, c: (a, b, onehot(c)))
next(iter(train_ds))
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.d0 = Dense(64, activation='relu')
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(1)
self.d3 = Dense(3)
def call(self, x, training=None, **kwargs):
x = self.d0(x)
x = self.d1(x)
a = self.d2(x)
b = self.d3(x)
return a, b
model = MyModel()
loss_obj_reg = tf.keras.losses.MeanAbsoluteError()
loss_obj_cat = tf.keras.losses.CategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam(learning_rate=1e-3)
loss_reg_train = tf.keras.metrics.Mean(name='regression loss')
loss_cat_train = tf.keras.metrics.Mean(name='categorical loss')
loss_reg_test = tf.keras.metrics.Mean(name='regression loss')
loss_cat_test = tf.keras.metrics.Mean(name='categorical loss')
train_acc = tf.keras.metrics.CategoricalAccuracy()
test_acc = tf.keras.metrics.CategoricalAccuracy()
@tf.function
def train_step(inputs, y_reg, y_cat):
with tf.GradientTape() as tape:
pred_reg, pred_cat = model(inputs, training=True)
reg_loss = loss_obj_reg(y_reg, pred_reg)
cat_loss = loss_obj_cat(y_cat, pred_cat)
gradients = tape.gradient([reg_loss, cat_loss], model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
loss_reg_train(reg_loss)
loss_cat_train(cat_loss)
train_acc(y_cat, pred_cat)
@tf.function
def test_step(inputs, y_reg, y_cat):
pred_reg, pred_cat = model(inputs, training=False)
reg_loss = loss_obj_reg(y_reg, pred_reg)
cat_loss = loss_obj_cat(y_cat, pred_cat)
loss_reg_test(reg_loss)
loss_cat_test(cat_loss)
test_acc(y_cat, pred_cat)
for epoch in range(250):
loss_reg_train.reset_states()
loss_cat_train.reset_states()
loss_reg_test.reset_states()
loss_cat_test.reset_states()
train_acc.reset_states()
test_acc.reset_states()
for xx, yy, zz in train_ds:
train_step(xx, yy, zz)
for xx, yy, zz in test_ds:
test_step(xx, yy, zz)
template = 'Epoch {:3} ' \
'MAE {:5.3f} TMAE {:5.3f} ' \
'Entr {:5.3f} TEntr {:5.3f} ' \
'Acc {:7.2%} TAcc {:7.2%}'
print(template.format(epoch+1,
loss_reg_train.result(),
loss_reg_test.result(),
loss_cat_train.result(),
loss_cat_test.result(),
train_acc.result(),
test_acc.result()))
如果您需要任何信息,请告诉我。