【问题标题】:Deleting consecutive RGB values from a numpy array从 numpy 数组中删除连续的 RGB 值
【发布时间】:2025-12-06 14:20:22
【问题描述】:

我最初从初始数组为灰度图像创建了一个子数组:Deleting consecutive numbers from a numpy arrayRemove following duplicates in a numpy array

但现在我想对彩色图像做同样的事情,我真的很困惑。我已经为此工作了好几天,根本无法理解如何处理它。

问题是正方形的大小不同,我希望每个正方形都有一个像素,用相同的颜色表示。

彩色图像:

Coloured image

我的灰度图像代码:

from PIL import Image
import numpy as np

name1 = raw_input("What is the name of the .png file you want to open? ")

filename1 = "%s.png" % name1

img = Image.open(filename1).convert('L')  # convert image to 8-bit grayscale
WIDTH, HEIGHT = img.size

a = list(img.getdata()) # convert image data to a list of integers
# convert that to 2D list (list of lists of integers)
a = np.array ([a[offset:offset+WIDTH] for offset in range(0, WIDTH*HEIGHT, WIDTH)])

print " "
print "Intial array from image:"  #print as array
print " "
print a

rows_mask = np.insert(np.diff(a[:, 0]).astype(np.bool), 0, True)
columns_mask = np.insert(np.diff(a[0]).astype(np.bool), 0, True)
b = a[np.ix_(rows_mask, columns_mask)]

print " "
print "Subarray from Image:"  #print as array
print " "
print b

#img = Image.fromarray(b, mode='L')

print " "
print "Subarray from Image (clearer format):"  #print as array
print " "
for row in b: #print as a table like format
    print(' '.join('{:3}'.format(value) for value in row))

#img.save("chocolate.png")


#print np.mean(b) #finding mean

例如这张图片:

输入数组示例:

来自a = list(img.getdata()),这是我从图像中得到的输入。

[(115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (115, 45, 135), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (245, 245, 35), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (55, 235, 195), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95), (245, 245, 95)]

numpy 输入使用a = np.array ([a[offset:offset+WIDTH] for offset in range(0, WIDTH*HEIGHT, WIDTH)]):

[[[115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]]

 [[115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]]

 [[115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]]

 [[115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]]

 [[115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [115  45 135]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]
  [245 245  35]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]

 [[ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [ 55 235 195]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]
  [245 245  95]]]

所需的输出:

[[[115  45 135] [245 245  35]]
[ 55 235 195] [245 245  95]]]

【问题讨论】:

  • 我已经更新了上面的帖子。如果你能调查一下,我将非常感激!
  • 与其从图像中删除像素并不得不将所有像素重新组合在一起以填补由此产生的空白,不如在开始时创建一个新的空输出图像,然后遍历您的原始图像,并且仅将像素复制到原始图像中值发生变化的新图像....
  • 非常感谢。你能指导我找到一个资源或一个例子吗,我可以看看?

标签: python arrays numpy image-processing python-imaging-library


【解决方案1】:

应该这样做:

columns_mask = np.insert(np.any(np.any(np.diff(a, axis=0).astype(np.bool), axis=1), axis=1), 0, True)
rows_mask = np.insert(np.any(np.any(np.diff(a, axis=1).astype(np.bool), axis=0), axis=1), 0, True)
print(a[np.ix_(columns_mask, rows_mask)])

输出:

[[[115  45 135]
  [245 245  35]]

 [[ 55 235 195]
  [245 245  95]]]

说明:
再举个比较有代表性的例子:

a = np.array([[[1, 2, 3],
               [1, 2, 3],
               [2, 4, 7],
               [2, 4, 7],
               [2, 4, 7]], 
              [[1, 2, 3],
               [1, 2, 3],
               [2, 4, 7],
               [2, 4, 7],
               [2, 4, 7]], 
              [[1, 2, 3],
               [1, 2, 3],
               [3, 4, 7],
               [3, 4, 7],
               [3, 4, 7]],
              [[1, 2, 3],
               [1, 2, 3],
               [3, 4, 7],
               [3, 4, 7],
               [3, 4, 7]],
              [[6, 4, 3],
               [6, 4, 3],
               [0, 1, 7],
               [0, 1, 7],
               [0, 1, 7]],
              [[6, 4, 3],
               [6, 4, 3],
               [0, 1, 7],
               [0, 1, 7],
               [0, 1, 7]]])

为了便于跟踪,我选择了 6x5x3 的尺寸。

对于 R、G 和 B,我们将有以下子数组:

>>> print(a[:,:,0])  # R
[[1 1 2 2 2]
 [1 1 2 2 2]
 [1 1 3 3 3]
 [1 1 3 3 3]
 [6 6 0 0 0]
 [6 6 0 0 0]]
>>> print(a[:,:,1])  # G
[[2 2 4 4 4]
 [2 2 4 4 4]
 [2 2 4 4 4]
 [2 2 4 4 4]
 [4 4 1 1 1]
 [4 4 1 1 1]]
>>> print(a[:,:,2])  # B
[[3 3 7 7 7]
 [3 3 7 7 7]
 [3 3 7 7 7]
 [3 3 7 7 7]
 [3 3 7 7 7]
 [3 3 7 7 7]]

请注意,在此示例中,我们有 6 个不同颜色的块。但是对于某些组件,为了示例,我选择了相同的值。
预期结果是:

# R
[[1 2]
 [1 3]
 [6 0]]
# G
[[2 4]
 [2 4]
 [4 1]]
# B
[[3 7]
 [3 7]
 [3 7]]

首先,我们计算diff 以定位颜色方块之间的边界。
对于列:

>>> print(np.diff(a, axis=0))
[[[ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [ 0  0  0]
  [ 1  0  0]
  [ 1  0  0]
  [ 1  0  0]]

 [[ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 5  2  0]
  [ 5  2  0]
  [-3 -3  0]
  [-3 -3  0]
  [-3 -3  0]]

 [[ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]
  [ 0  0  0]]]

对于行:

>>> print(np.diff(a, axis=1))
[[[ 0  0  0]
  [ 1  2  4]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [ 1  2  4]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [ 2  2  4]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [ 2  2  4]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [-6 -3  4]
  [ 0  0  0]
  [ 0  0  0]]

 [[ 0  0  0]
  [-6 -3  4]
  [ 0  0  0]
  [ 0  0  0]]]

仔细查看这些数字的来源。

接下来,我们使用.astype(np.bool) 将所有非零元素转换为True。我们需要它来创建布尔掩码。有关使用布尔数组进行索引的更多信息,请参阅 NumPy docs
对于我们得到的列:

>>> print(np.diff(a, axis=0).astype(np.bool))
[[[False False False]
  [False False False]
  [False False False]
  [False False False]
  [False False False]]

 [[False False False]
  [False False False]
  [ True False False]
  [ True False False]
  [ True False False]]

 [[False False False]
  [False False False]
  [False False False]
  [False False False]
  [False False False]]

 [[ True  True False]
  [ True  True False]
  [ True  True False]
  [ True  True False]
  [ True  True False]]

 [[False False False]
  [False False False]
  [False False False]
  [False False False]
  [False False False]]]

对于行:

>>> print(np.diff(a, axis=1).astype(np.bool))
[[[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]

 [[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]

 [[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]

 [[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]

 [[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]

 [[False False False]
  [ True  True  True]
  [False False False]
  [False False False]]]

现在我们应该对第一个数组的行和第二个数组的列应用逻辑或运算。我们需要这样做,以免错过具有相同值的连续块,例如,在 R 颜色的情况下。

>>> print(np.any(np.diff(a, axis=0).astype(np.bool), axis=1))
[[False False False]
 [ True False False]
 [False False False]
 [ True  True False]
 [False False False]]
>>> print(np.any(np.diff(a, axis=1).astype(np.bool), axis=0))
[[False False False]
 [ True  True  True]
 [False False False]
 [False False False]]

有关np.any 的详细信息,请参阅以下问题:How to operate logic operation of all columns of a 2D numpy array

现在我们对颜色执行相同的操作:

>>> print(np.any(np.any(np.diff(a, axis=0).astype(np.bool), axis=1), axis=1))
[False  True False  True False]
>>> print(np.any(np.any(np.diff(a, axis=1).astype(np.bool), axis=0), axis=1))
[False  True False False]

最后,使用np.insert 在数组开头添加True 以考虑第一个元素:

>>> print(np.insert(np.any(np.any(np.diff(a, axis=0).astype(np.bool), axis=1), axis=1), 0, True))
[ True False  True False  True False]
>>> print(np.insert(np.any(np.any(np.diff(a, axis=1).astype(np.bool), axis=0), axis=1), 0, True))
[ True False  True False False]

现在将这些索引与np.ix_ 一起使用以获得所需的结果:

columns_mask = np.insert(np.any(np.any(np.diff(a, axis=0).astype(np.bool), axis=1), axis=1), 0, True)
rows_mask = np.insert(np.any(np.any(np.diff(a, axis=1).astype(np.bool), axis=0), axis=1), 0, True)

>>> print(a[np.ix_(columns_mask, rows_mask)])
[[[1 2 3]
  [2 4 7]]

 [[1 2 3]
  [3 4 7]]

 [[6 4 3]
  [0 1 7]]]

就是这样!

我们可以检查不同颜色是否正确:

>>> print(a[np.ix_(columns_mask, rows_mask)][:, :, 0])  # R
[[1 2]
 [1 3]
 [6 0]]
>>> print(a[np.ix_(columns_mask, rows_mask)][:, :, 1])  # G
[[2 4]
 [2 4]
 [4 1]]
>>> print(a[np.ix_(columns_mask, rows_mask)][:, :, 2])  # B
[[3 7]
 [3 7]
 [3 7]]

【讨论】:

  • 非常感谢我最初的测试,它们运行良好。有时间请解释一下!非常感谢!
  • @AbidAbdulGafoor 添加了解释