【发布时间】:2016-10-13 20:00:36
【问题描述】:
我正在尝试使用 Tensorflow(r0.10,python 3.5)在玩具分类问题上训练递归神经网络,但结果令人困惑。
我想将一个 0 和 1 的序列输入到 RNN 中,并让序列中给定元素的目标类是由序列的当前值和先前值表示的数字,被视为二进制数.例如:
input sequence: [0, 0, 1, 0, 1, 1]
binary digits : [-, [0,0], [0,1], [1,0], [0,1], [1,1]]
target class : [-, 0, 1, 2, 1, 3]
看起来这是 RNN 应该能够很容易地学习的东西,但我的模型只能区分 [0,2] 和 [1,3] 类。换句话说,它能够区分当前数字为 0 的类别和当前数字为 1 的类别。这让我相信 RNN 模型没有正确地学习查看序列的先前值.
有几个教程和示例([1]、[2]、[3])演示了如何在 tensorflow 中构建和使用递归神经网络(RNN),但在学习了它们之后,我仍然看不到我的问题(所有示例都使用文本作为源数据并没有帮助)。
我正在将我的数据作为长度为T 的列表输入到tf.nn.rnn(),其元素是[batch_size x input_size] 序列。由于我的序列是一维的,input_size 等于一,所以基本上我相信我正在输入长度为batch_size 的序列列表(documentation 我不清楚哪个维度被视为时间维度)。 这样理解正确吗?如果是这样,那我不明白为什么 RNN 模型没有正确学习。
很难得到一小部分代码可以通过我的完整 RNN 运行,这是我能做的最好的(它主要改编自 the PTB model here 和 the char-rnn model here):
import tensorflow as tf
import numpy as np
input_size = 1
batch_size = 50
T = 2
lstm_size = 5
lstm_layers = 2
num_classes = 4
learning_rate = 0.1
lstm = tf.nn.rnn_cell.BasicLSTMCell(lstm_size, state_is_tuple=True)
lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * lstm_layers, state_is_tuple=True)
x = tf.placeholder(tf.float32, [T, batch_size, input_size])
y = tf.placeholder(tf.int32, [T * batch_size * input_size])
init_state = lstm.zero_state(batch_size, tf.float32)
inputs = [tf.squeeze(input_, [0]) for input_ in tf.split(0,T,x)]
outputs, final_state = tf.nn.rnn(lstm, inputs, initial_state=init_state)
w = tf.Variable(tf.truncated_normal([lstm_size, num_classes]), name='softmax_w')
b = tf.Variable(tf.truncated_normal([num_classes]), name='softmax_b')
output = tf.concat(0, outputs)
logits = tf.matmul(output, w) + b
probs = tf.nn.softmax(logits)
cost = tf.reduce_mean(tf.nn.seq2seq.sequence_loss_by_example(
[logits], [y], [tf.ones_like(y, dtype=tf.float32)]
))
optimizer = tf.train.GradientDescentOptimizer(learning_rate)
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(cost, tvars),
10.0)
train_op = optimizer.apply_gradients(zip(grads, tvars))
init = tf.initialize_all_variables()
with tf.Session() as sess:
sess.run(init)
curr_state = sess.run(init_state)
for i in range(3000):
# Create toy data where the true class is the value represented
# by the current and previous value treated as binary, i.e.
train_x = np.random.randint(0,2,(T * batch_size * input_size))
train_y = train_x + np.concatenate(([0], (train_x[:-1] * 2)))
# Reshape into T x batch_size x input_size
train_x = np.reshape(train_x, (T, batch_size, input_size))
feed_dict = {
x: train_x, y: train_y
}
for j, (c, h) in enumerate(init_state):
feed_dict[c] = curr_state[j].c
feed_dict[h] = curr_state[j].h
fetch_dict = {
'cost': cost, 'final_state': final_state, 'train_op': train_op
}
# Evaluate the graph
fetches = sess.run(fetch_dict, feed_dict=feed_dict)
curr_state = fetches['final_state']
if i % 300 == 0:
print('step {}, train cost: {}'.format(i, fetches['cost']))
# Test
test_x = np.array([[0],[0],[1],[0],[1],[1]]*(T*batch_size*input_size))
test_x = test_x[:(T*batch_size*input_size),:]
probs_out = sess.run(probs, feed_dict={
x: np.reshape(test_x, [T, batch_size, input_size]),
init_state: curr_state
})
# Get the softmax outputs for the points in the sequence
# that have [0, 0], [0, 1], [1, 0], [1, 1] as their
# last two values.
for i in [1, 2, 3, 5]:
print('{}: [{:.4f} {:.4f} {:.4f} {:.4f}]'.format(
[1, 2, 3, 5].index(i), *list(probs_out[i,:]))
)
这里的最终输出是
0: [0.4899 0.0007 0.5080 0.0014]
1: [0.0003 0.5155 0.0009 0.4833]
2: [0.5078 0.0011 0.4889 0.0021]
3: [0.0003 0.5052 0.0009 0.4936]
这表明它只是学习区分[0,2]和[1,3]。 为什么这个模型不学习使用序列中的前一个值?
【问题讨论】:
标签: python tensorflow recurrent-neural-network