【发布时间】:2025-12-31 16:50:02
【问题描述】:
我正在尝试在 keras 中扩充我的 MNIST 数据集,但由于某种原因它无法正常工作。任何帮助将不胜感激。
部分代码:
x_train = x_train.reshape(x_train.shape[0],28, 28,1)
x_test = x_test.reshape(x_test.shape[0],28, 28,1)
x_train = x_train.reshape(x_train.shape[0],28, 28,1)
x_test = x_test.reshape(x_test.shape[0],28, 28,1)
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2)
model.compile(loss='categorical_crossentropy',
optimizer= adam,
metrics=['accuracy'])
train_gen = datagen.flow(x_train, r_train, batch_size=batch_size)
history2 = model.fit_generator(train_gen,
steps_per_epoch=int(np.ceil(x_train.shape[0] / float(batch_size))),
epochs=epochs)
# history = model.fit(x_train, r_train,
# batch_size=batch_size,
# epochs=epochs,
# verbose=1,
# validation_data=(x_test, r_test))
score = model.evaluate(x_test, r_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
错误:
ValueError:检查输入时出错:预期dense_218_input 有2 维,但得到的数组形状为(512, 28, 28, 1)
【问题讨论】:
-
如果有人正在寻找这个问题的答案please check hrere
标签: deep-learning keras mnist