【发布时间】:2023-08-12 03:00:02
【问题描述】:
这里是机器学习的新手。我正在尝试训练 1000 对训练数据和 500 对测试数据,而不是整个数据集。但是,我收到了错误:
“ValueError:检查目标时出错:预期activation_24 的形状为(10,),但得到的数组的形状为(1,)”
这是我与数据相关的部分代码:
# load data
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train / 255
X_test = X_test / 255
X_train = X_train.reshape(-1,1,28,28)
X_train = X_train[:1000,:,:]
X_test = X_test[:500,:,:]
y_train = y_train[:1000]
y_test = y_test[:500]
X_test = np.array(X_test)
X_test = X_test.reshape(-1,1,28,28)
print('X_train shape: ',X_train.shape)
print('X_test shape: ',np.shape(X_test ))
print('y_train shape: ',y_train.shape)
print('y_test shape: ',np.shape(y_test ))
输出:
X_train 形状:(1000, 1, 28, 28) X_test 形状:(500, 1, 28, 28) y_train 形状:(1000,) y_test 形状:(500,)
我在这方面做得对吗?还有其他方法可以实现目标吗? 提前致谢
【问题讨论】:
标签: python tensorflow keras deep-learning mnist