【发布时间】:2019-01-04 07:01:24
【问题描述】:
我的模型结构如下:
层(类型)输出形状参数#
conv2d_31 (Conv2D) (None, 40, 40, 16) 160
_________________________________________________________________
max_pooling2d_4 (MaxPooling2 (None, 20, 20, 16) 0
_________________________________________________________________
conv2d_32 (Conv2D) (None, 20, 20, 32) 12832
_________________________________________________________________
max_pooling2d_5 (MaxPooling2 (None, 10, 10, 32) 0
_________________________________________________________________
conv2d_33 (Conv2D) (None, 10, 10, 64) 100416
_________________________________________________________________
max_pooling2d_6 (MaxPooling2 (None, 5, 5, 64) 0
_________________________________________________________________
flatten_2 (Flatten) (None, 1600) 0
_________________________________________________________________
dense_3 (Dense) (None, 1024) 1639424
_________________________________________________________________
dropout_2 (Dropout) (None, 1024) 0
_________________________________________________________________
dense_4 (Dense) (None, 1) 1025
_________________________________________________________________
activation_52 (Activation) (None, 1) 0
我想将反卷积应用于任何特定层并绘制结果。我想我应该使用 Conv2DTranspose 层,但我似乎无法理解其中涉及的论点。请帮忙
【问题讨论】:
标签: python keras convolution deconvolution