【问题标题】:Recursive-backtracking algorithm for solving the partitioning problem解决分区问题的递归回溯算法
【发布时间】:2011-08-15 00:54:54
【问题描述】:

嘿,我正在寻找一些帮助来找到一种算法,该算法将正数数组划分为 k 部分,以便每个部分具有(大约)相同的总和......假设我们有

1,2,3,4,5,6,7,8,9 en k=3 那么算法应该像这样划分它 1,2,3,4,5|6,7|8,9 元素的顺序不能改变......找到一个贪心算法很容易,但我正在寻找一个总是返回最优解的回溯版本......

谁有任何提示?

【问题讨论】:

    标签: algorithm recursion partitioning backtracking partition-problem


    【解决方案1】:

    最佳解决方案是什么意思?我相信您的意思是将每个分区距离之和最小化到最佳分区的那个。最佳分区是它的元素总和等于总和除以分区数的分区。

    如果您不介意效率,那么也许这种粗略的方法对您来说已经足够了。我还没有测试算法来检查它的正确性,所以要小心。

    void FindPartitions(int[] numbers, int i, IList<int>[] partitions, int currentPartition, IList<int>[] bestSolution, ref int minDistance)
    {
        if (i == numbers.Length)
        {
            int sum = numbers.Sum();
            int avg = sum / partitions.Length;
            int currentDistance = 0;
            foreach (var partition in partitions)
                currentDistance += Math.Abs(partition.Sum() - avg);
            if (currentDistance < minDistance)
            {
                minDistance = currentDistance;
                for (int j = 0; j < partitions.Length; j++)
                    bestSolution[j] = new List<int>(partitions[j]);
            }
        }
        else
        {
            partitions[currentPartition].Add(numbers[i]);
            FindPartitions(numbers, i + 1, partitions, currentPartition, bestSolution, ref minDistance);
            partitions[currentPartition].RemoveAt(partitions[currentPartition].Count - 1);
            if (currentPartition < partitions.Length - 1)
                FindPartitions(numbers, i, partitions, currentPartition + 1, bestSolution, ref minDistance);
        }
    }
    

    【讨论】:

      【解决方案2】:

      这是一个不使用任何动态数据结构(例如列表)的解决方案。它们完全没有必要,实际上会使算法比必要的慢得多。

      设 K 为此处的分区数,N 为数组中的元素数。

      int start[K];
      
      void register() {
         /* calculate the error between minimum and maximum value partitions */
         /* partition boundaries are start[0], start[1], start[2], ... */
         /* if lower error than previously stored, remember the best solution */
      }
      
      void rec(int s, int k) {
        if (k == K) register();
        for (int i = s; i < N; i++) {
          start[k] = i;
          rec(i + 1, k + 1);
        }
      }
      
      /* entry */
      start[0] = 0;
      rec(1, 1);
      /* then output the best solution found at register() */
      

      注意:这是一个 O(nK) 算法。它是次指数的,因为这等同于一般的 NP 完全分区问题,在这里您正在寻找线性数组的连续段,而不是给定总集的任意子集。

      【讨论】:

        【解决方案3】:

        这是 Javascript 中的递归算法。此函数返回将分配给每个工作人员的总数。假设输入数组 bookLoads 是一个正数数组,您希望将其尽可能公平地划分为 k 个部分(假设在 k 个工作人员之间)

        这是一个有效的小提琴: https://jsfiddle.net/missyalyssi/jhtk8vnc/3/

        function fairWork(bookLoads, numWorkers = 0) {
            // recursive version
        
            // utilities
            var bestDifference = Infinity;
            var bestPartition = {};
            var initLoads = {};
            var workers = Array.from({length: numWorkers}, (val, idx) => {
              initLoads[idx] = 0;
              return idx;
            });
            var bookTotal = bookLoads.reduce((acc, curr) => {return acc + curr}, 0); 
            var average = bookTotal / bookLoads.length;
        
            // recursive function
            function partition(books = bookLoads, workers, loads={}) {
        
              // if only one worker give them all the books
              if (workers.length == 1 && books.length > 0) {
                var onlyWorker = workers[0];
                loads[onlyWorker] += books.reduce((acum, curr, idx, arr) => {
                                       return acum + curr;
                                     },0);
                books = [];
              }
        
              // base case
              if (books.length == 0) {
                var keys = Object.keys(loads);
                var total = 0;
                for (let key = 0; key < keys.length; key++) {
                  // square so that difference shows 
                  total += Math.pow(Math.abs(average - loads[keys[key]]), 2);
                }
                if (total < bestDifference) {
                  bestDifference = total;
                  bestPartition= loads;
                }
                return bestPartition;
              }
        
              var currBookLoad = books[0];
        
              // add book to curr worker 1
              var newWorker1Loads = Object.assign({}, loads);
              var worker1 = workers[0]; 
              newWorker1Loads[worker1] = newWorker1Loads[worker1] + currBookLoad || currBookLoad;
              partition(books.slice(1), workers, newWorker1Loads)
        
              // give to next worker
              var newNextWorkerLoads = Object.assign({}, loads);
              var worker2 = workers[1]; 
              newNextWorkerLoads[worker2] = newNextWorkerLoads[worker2] + currBookLoad || currBookLoad;
              partition(books.slice(1), workers.slice(1), newNextWorkerLoads)
        
              return bestPartition;
            }
            // function call
            return partition(bookLoads, workers, initLoads)
        }
        fairWork([3,1,2,3], 3)
        //Result will be: Object {0: 3, 1: 3, 2: 3}
        fairWork([1,2,3,4,5,6,7,8,9], 3)
        //Result will be: Object {0: 15, 1: 13, 2: 17}
        

        【讨论】: