【发布时间】:2018-01-26 13:39:10
【问题描述】:
我在使用 Scikit Learn 中的 LinearRegression 算法时遇到了一些问题 - 我浏览了论坛并用 Google 搜索了很多,但由于某种原因,我没有设法绕过该错误。我正在使用 Python 3.5
以下是我尝试过的,但不断收到值错误:“找到样本数量不一致的输入变量:[403, 174]”
X = df[["Impressions", "Clicks", "Eligible_Impressions", "Measureable_Impressions", "Viewable_Impressions"]].values
y = df["Total_Conversions"].values.reshape(-1,1)
print ("The shape of X is {}".format(X.shape))
print ("The shape of y is {}".format(y.shape))
The shape of X is (577, 5)
The shape of y is (577, 1)
X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.3, random_state = 42)
linreg = LinearRegression()
linreg.fit(X_train, y_train)
y_pred = linreg.predict(X_test)
print (y_pred)
print ("The shape of X_train is {}".format(X_train.shape))
print ("The shape of y_train is {}".format(y_train.shape))
print ("The shape of X_test is {}".format(X_test.shape))
print ("The shape of y_test is {}".format(y_test.shape))
The shape of X_train is (403, 5)
The shape of y_train is (174, 5)
The shape of X_test is (403, 1)
The shape of y_test is (174, 1)
我是否遗漏了一些明显的东西?
任何帮助将不胜感激。
亲切的问候, 阿德里安
【问题讨论】:
标签: python pandas numpy scikit-learn linear-regression