【问题标题】:finding the maximum number of points that lie on the same straight line in a 2D plane在二维平面中找到位于同一直线上的最大点数
【发布时间】:2025-11-23 04:00:01
【问题描述】:

这个“给定二维平面上的 n 个点,找出位于同一直线上的最大点数。” 来自 leetcode.com 的问题 我正在尝试解决它,但我无法通过所有测试 案例。

我正在尝试做的是:- 我正在使用一个哈希图,其键是角度 b/w 我通过斜率的 tan 倒数得到的点,并且我存储每个斜率的值最初是该点的出现次数,然后递增它。

我正在使用另一个哈希图来计算点的出现次数。

对于 (0,0),(1,0) 之类的点,我没有得到正确答案,它们应该返回 2,但它返回 1。

我错过了什么?

我的代码是:

public class MaxPointsINLine {
    int max = 0;
    int same;

    public int maxPoints(Point[] points) {
        int max = 0;
        Map<Double, Integer> map = new HashMap<Double, Integer>();
        Map<Point, Integer> pointmap = new HashMap<Point, Integer>();
        for(Point point: points)
        {
            if(!pointmap.containsKey(point))
            {
                pointmap.put(point, 1);
            }
            else
            {
                pointmap.put(point, pointmap.get(point)+1);
            }
        }
        if (points.length >= 2) {
            for (int i = 0; i < points.length; i++) {
                for (int j = i ; j < points.length; j++) {
                    double dx = points[j].x - points[i].x;
                    double dy = points[j].y - points[i].y;
                    double slope = Math.atan(dy / dx);
                    if (!map.containsKey(slope)) {
                        map.put(slope, pointmap.get(points[j]));
                    } else
                        map.put(slope, map.get(slope) + 1);
                }
            }
            for (Double key : map.keySet()) {
                if (map.get(key) > max) {
                    max = map.get(key);
                }
            }
            return max;
        } else if (points.length != 0) {
            return 1;
        } else {
            return 0;
        }
    } 

    public static void main(String[] args) {
        Point point1 = new Point(0,0);
        Point point2 = new Point(0,0);
        //Point point3 = new Point(2,2);
        MaxPointsINLine maxpoint = new MaxPointsINLine();
        Point[] points = { point1, point2};
        System.out.println(maxpoint.maxPoints(points));

    }

}

class Point {
    int x;
    int y;

    Point() {
        x = 0;
        y = 0;
    }

    Point(int a, int b) {
        x = a;
        y = b;
    }

    @Override
    public boolean equals(Object obj) {
        Point that = (Point)obj;
        if (that.x == this.x && that.y == this.y)
            return true;
        else
            return false;
    }

    @Override
    public int hashCode() {
        // TODO Auto-generated method stub
        return 1;
    }
}

【问题讨论】:

  • 你填充了pointmap,但你从不使用它。你的意思是把它合并到算法中吗?
  • @Chris Culter 对不起,我正在使用点图 -if (!map.containsKey(slope)) {map.put(slope, pointmap.get(points[j]));} 如果有是像 (0,0)(0,0) 这样的点,它会将值 2 放入地图中。
  • 我不知道最初的问题,但我非常不愿意使用 atan 并为此依赖浮点比较。它可能会导致意想不到的答案(从数学的角度来看)。
  • 看到这个问题可能对你有帮助*.com/questions/4179581/…
  • 使用Double 作为查找键是非常可疑的如果您希望通过计算找到相同的Double(考虑浮点不准确!) .此外,任何依赖于 slope几何计算与点 都被视为失败:当点具有相同的 x 坐标时(或者在您的情况下:x 坐标0),您将遇到InfinityNaN。此外,即使直线通过原点,也有一些点位于同一直线上。所以我认为这种方法总体上是有缺陷的(但我也可能是错的......)

标签: java algorithm


【解决方案1】:

一般策略似乎行不通。假设我们已经成功地用键值对(a, N) 填充了map,其中a 是一个角度,N 是由角度a 连接的点对的数量。考虑以下 6 点的排列:

**
  **
**

明确地,在 (0,0)、(1,0)、(2,1)、(3,1)、(0,2) 和 (1,2) 处有点。您可以检查位于任何线上的最大点数为 2。但是,有 3 对点以相同的角度连接:((0,0), (1,0)), ((2 ,1), (3,1)) 和 ((0,2), (1,2))。所以map 将包含一个带有N = 3 的键值对,但这不是原始问题的答案。

由于上述安排,仅计算坡度是不够的。成功的算法必须以能够区分平行线的方式来表示线。

【讨论】:

  • 有没有其他办法。
  • 当然:对于每个点p,填充一个哈希图,计算从其他点到p的角度,并找到计数最大的角度N。然后在循环所有p 时累积N 的最大值。顺便说一句,就像 Marco13 所说,如果你想让它工作,不要将角度表示为浮点数。相反,您可以将角度表示为一对整数 (dx, dy),其中 dx 和 dy 被归一化为互质。
  • 谢谢,但要解决相同的问题,例如 [(0,0),(0,0)] , [(1,1),(0,0),(1,1)]对于第一种情况,它给出 1 而不是 2,第二种情况是 2 而不是 3
  • 哦,对了,对于每个p,您还需要计算与p 重合的点数n,然后将n 添加到N。跨度>
【解决方案2】:

这个对我有用:

/**
 * Definition for a point.
 * class Point {
 *     int x;
 *     int y;
 *     Point() { x = 0; y = 0; }
 *     Point(int a, int b) { x = a; y = b; }
 * }
 */
public class Solution {
    public int maxPoints(Point[] points) {


        int result = 0;
        for(int i = 0; i<points.length; i++){
            Map<Double, Integer> line = new HashMap<Double, Integer>();
            Point a = points[i];
            int same = 1;    
            //System.out.println(a);
            for(int j = i+1; j<points.length; j++){
                Point b = points[j];
                //System.out.println(" point " + b.toString());
                if(a.x == b.x && a.y == b.y){
                    same++;
                } else {
                    double dy = b.y - a.y;
                    double dx = b.x - a.x;
                    Double slope;
                    if(dy == 0){ // horizontal
                        slope = 0.0;
                    } else if(dx == 0){//eartical
                        slope = Math.PI/2;
                    } else {
                        slope = Math.atan(dy/dx);
                    }
                    Integer slopeVal = line.get(slope);
                    //System.out.println(" slope " + slope + "  slope value " + slopeVal);
                    if(slopeVal == null){
                        slopeVal = 1;
                    } else {
                        slopeVal += 1;
                    }
                    line.put(slope, slopeVal);
                }
            }

            for (Double key : line.keySet()) {
                Integer val = line.get(key);
                result = Math.max(result, val + same);
            }
            // for all points are same
            result = Math.max(result, same);

        }
        return result;
    }



}

【讨论】:

  • 这如何工作,因为它只考虑两点之间的斜率而不考虑 y 截距?当两条平行线之间的点不在同一条线上时,尽管它们具有相同的斜率,它们的点将被一起计算
【解决方案3】:

这里最直接的解决方案似乎如下:可以考虑每一对点。对于每一对,计算其他点到连接两点的线的距离。如果该距离几乎为零,则该点位于该线上。

当所有对都完成此操作后,可以选择连接线上点数最多的对。

当然,这不是很优雅,因为它在 O(n^3) 中并且执行了两次计算。但它非常简单且相当可靠。我只是在这里将其实现为MCVE

可以通过鼠标左键设置点。右键单击清除屏幕。显示一行中的最大点数,并突出显示对应的点。

(编辑:根据评论更新以处理距离为 0 的点)

import java.awt.BorderLayout;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.Point;
import java.awt.event.MouseEvent;
import java.awt.event.MouseListener;
import java.awt.geom.Line2D;
import java.util.ArrayList;
import java.util.List;

import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;

public class PointsOnStraightLineTest
{
    public static void main(String[] args)
    {
        SwingUtilities.invokeLater(new Runnable()
        {
            @Override
            public void run()
            {
                createAndShowGUI();
            }
        });
    }

    private static void createAndShowGUI()
    {
        JFrame f = new JFrame();
        f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
        f.getContentPane().setLayout(new BorderLayout());
        f.getContentPane().add(new PointsPanel());
        f.setSize(600, 600);
        f.setLocationRelativeTo(null);
        f.setVisible(true);
    }
}

class PointsOnStraightLine
{
    // Large epsilon to make it easier to place
    // some points on one line with the mouse...
    private static final double EPSILON = 5.0; 

    List<Point> maxPointsOnLine = new ArrayList<Point>();

    void compute(List<Point> points)
    {
        maxPointsOnLine = new ArrayList<Point>();

        for (int i=0; i<points.size(); i++)
        {
            for (int j=i+1; j<points.size(); j++)
            {
                Point p0 = points.get(i);
                Point p1 = points.get(j);
                List<Point> resultPoints = null;
                if (p0.distanceSq(p1) < EPSILON)
                {
                    resultPoints = computePointsNearby(p0, points);
                }
                else
                {
                    resultPoints = computePointsOnLine(p0, p1, points);
                }
                if (resultPoints.size() > maxPointsOnLine.size())
                {
                    maxPointsOnLine = resultPoints;
                }
            }
        }
    }

    private List<Point> computePointsOnLine(
        Point p0, Point p1, List<Point> points)
    {
        List<Point> result = new ArrayList<Point>();
        for (int k=0; k<points.size(); k++)
        {
            Point p = points.get(k);
            double d = Line2D.ptLineDistSq(p0.x, p0.y, p1.x, p1.y, p.x, p.y);
            if (d < EPSILON)
            {
                result.add(p);
            }
        }
        return result;
    }

    private List<Point> computePointsNearby(
        Point p0, List<Point> points)
    {
        List<Point> result = new ArrayList<Point>();
        for (int k=0; k<points.size(); k++)
        {
            Point p = points.get(k);
            double d = p.distanceSq(p0);
            if (d < EPSILON)
            {
                result.add(p);
            }
        }
        return result;
    }

}



class PointsPanel extends JPanel implements MouseListener
{
    private final List<Point> points;
    private final PointsOnStraightLine pointsOnStraightLine;

    PointsPanel()
    {
        addMouseListener(this);

        points = new ArrayList<Point>();
        pointsOnStraightLine = new PointsOnStraightLine();
    }

    @Override
    protected void paintComponent(Graphics gr)
    {
        super.paintComponent(gr);
        Graphics2D g = (Graphics2D)gr;

        g.setColor(Color.BLACK);
        for (Point p : points)
        {
            g.fillOval(p.x-2, p.y-2, 4, 4);
        }

        pointsOnStraightLine.compute(points);

        int n = pointsOnStraightLine.maxPointsOnLine.size();
        g.drawString("maxPoints: "+n, 10, 20);

        g.setColor(Color.RED);
        for (Point p : pointsOnStraightLine.maxPointsOnLine)
        {
            g.drawOval(p.x-3, p.y-3, 6, 6);
        }
    }

    @Override
    public void mouseClicked(MouseEvent e)
    {
        if (SwingUtilities.isRightMouseButton(e))
        {
            points.clear();
        }
        else
        {
            points.add(e.getPoint());
        }
        repaint();
    }

    @Override
    public void mousePressed(MouseEvent e)
    {
    }

    @Override
    public void mouseReleased(MouseEvent e)
    {
    }

    @Override
    public void mouseEntered(MouseEvent e)
    {
    }

    @Override
    public void mouseExited(MouseEvent e)
    {
    }
}

【讨论】:

  • 你检查过它是否有相同的点,比如 (0,0),(0,0) 它不适合他们。
  • @user3649361 如何处理这些问题并不完全清楚。也不清楚(浮点)公差应该是什么,以将三个点视为“在一条线上”。但是,我已经更新了示例以处理位于同一位置的点,即使它们没有定义 line,而是 infinitely many 线....
  • 嗯... O(n^2) 怎么样? O(n^2) 只是遍历所有对。计算每对的距离是另一个 O(n)。所以整个事情是 O(n^3)。
最近更新 更多