【发布时间】:2017-04-02 16:50:49
【问题描述】:
我有一些代码可以将大量(1000 秒)的 celery 任务排入队列,例如,假设是这样:
for x in xrange(2000):
example_task.delay(x)
有没有更好/更有效的方式来一次对大量任务进行排队?他们都有不同的论点。
【问题讨论】:
标签: python celery celery-task
我有一些代码可以将大量(1000 秒)的 celery 任务排入队列,例如,假设是这样:
for x in xrange(2000):
example_task.delay(x)
有没有更好/更有效的方式来一次对大量任务进行排队?他们都有不同的论点。
【问题讨论】:
标签: python celery celery-task
调用大量任务对您的 celery 工人来说是不健康的。 此外,如果您正在考虑收集调用任务的结果,那么您的代码将不是最佳的。
您可以将任务分成一定大小的批次。考虑下面链接中提到的示例。
http://docs.celeryproject.org/en/latest/userguide/canvas.html#chunks
【讨论】:
当我们想使用 Celery 处理数百万个 PDF 时,我们也遇到了这个问题。我们的解决方案是写一些我们称之为CeleryThrottle 的东西。基本上,您可以使用所需的 Celery 队列和所需的任务数来配置节流阀,然后在循环中创建任务。在您创建任务时,油门将监控实际队列的长度。如果它被消耗得太快,它会在一段时间内加速你的循环,以便将更多任务添加到队列中。如果队列变得太大,它会减慢你的循环并让一些任务完成。
代码如下:
class CeleryThrottle(object):
"""A class for throttling celery."""
def __init__(self, min_items=100, queue_name='celery'):
"""Create a throttle to prevent celery run aways.
:param min_items: The minimum number of items that should be enqueued.
A maximum of 2× this number may be created. This minimum value is not
guaranteed and so a number slightly higher than your max concurrency
should be used. Note that this number includes all tasks unless you use
a specific queue for your processing.
"""
self.min = min_items
self.max = self.min * 2
# Variables used to track the queue and wait-rate
self.last_processed_count = 0
self.count_to_do = self.max
self.last_measurement = None
self.first_run = True
# Use a fixed-length queue to hold last N rates
self.rates = deque(maxlen=15)
self.avg_rate = self._calculate_avg()
# For inspections
self.queue_name = queue_name
def _calculate_avg(self):
return float(sum(self.rates)) / (len(self.rates) or 1)
def _add_latest_rate(self):
"""Calculate the rate that the queue is processing items."""
right_now = now()
elapsed_seconds = (right_now - self.last_measurement).total_seconds()
self.rates.append(self.last_processed_count / elapsed_seconds)
self.last_measurement = right_now
self.last_processed_count = 0
self.avg_rate = self._calculate_avg()
def maybe_wait(self):
"""Stall the calling function or let it proceed, depending on the queue.
The idea here is to check the length of the queue as infrequently as
possible while keeping the number of items in the queue as closely
between self.min and self.max as possible.
We do this by immediately enqueueing self.max items. After that, we
monitor the queue to determine how quickly it is processing items. Using
that rate we wait an appropriate amount of time or immediately press on.
"""
self.last_processed_count += 1
if self.count_to_do > 0:
# Do not wait. Allow process to continue.
if self.first_run:
self.first_run = False
self.last_measurement = now()
self.count_to_do -= 1
return
self._add_latest_rate()
task_count = get_queue_length(self.queue_name)
if task_count > self.min:
# Estimate how long the surplus will take to complete and wait that
# long + 5% to ensure we're below self.min on next iteration.
surplus_task_count = task_count - self.min
wait_time = (surplus_task_count / self.avg_rate) * 1.05
time.sleep(wait_time)
# Assume we're below self.min due to waiting; max out the queue.
if task_count < self.max:
self.count_to_do = self.max - self.min
return
elif task_count <= self.min:
# Add more items.
self.count_to_do = self.max - task_count
return
我们像这样使用它:
throttle = CeleryThrottle(min_items=30, queue_name=queue)
for item in items:
throttle.maybe_wait()
do_something.delay()
所以它使用起来非常简单,而且它很好地将队列保持在一个愉快的地方——不要太长,也不要太短。它保持队列耗尽速率的滚动平均值,并且可以相应地调整自己的计时器。
【讨论】: