【发布时间】:2024-01-20 11:11:01
【问题描述】:
我有以下熊猫数据框。
import pandas as pd
df = pd.read_csv('filename.csv')
print(df)
code1 code2 code3 code4 value1 value2 value3 value4
0 101 101 101 101 1000 1000 1000 1000
1 101 101 101 201 1000 1000 1000 1000
2 101 101 201 201 1000 1000 1000 1000
3 101 201 201 201 1000 1000 1000 1000
4 101 201 201 301 1000 1000 1000 1000
5 101 201 301 301 1000 1000 1000 1000
6 101 301 301 301 1000 1000 1000 1000
7 101 101 101 301 1000 1000 1000 1000
8 101 201 301 0 1000 1000 1000 0
9 101 301 0 0 1000 1000 0 0
....
考虑列代码(code1,code2,code3,code4),我需要创建一列来对列值(value1,value2,value3,value4)求和,如下所示:
code1 code2 code3 code4 value1 value2 value3 value4 sum_code_101 sum_code_201 sum_code_301
0 101 101 101 101 1000 1000 1000 1000 4000 0 0
1 101 101 101 201 1000 1000 1000 1000 3000 1000 0
2 101 101 201 201 1000 1000 1000 1000 2000 2000 0
3 101 201 201 201 1000 1000 1000 1000 1000 3000 0
4 101 201 201 301 1000 1000 1000 1000 1000 2000 1000
5 101 201 301 301 1000 1000 1000 1000 1000 1000 2000
6 101 301 301 301 1000 1000 1000 1000 1000 0 3000
7 101 101 101 301 1000 1000 1000 1000 3000 0 1000
8 101 201 301 0 1000 1000 1000 0 1000 1000 1000
9 101 301 0 0 1000 1000 0 0 1000 0 1000
我试过了:
df['sum_code_101']=df[df['code1']=='101'],['value1']+df[df['code2']=='101'],['value2']+df[df['code3']=='101'],['value3']+df[df['code4']=='101'],['value4']
df['sum_code_201']=df[df['code1']=='201'],['value1']+df[df['code2']=='201'],['value2']+df[df['code3']=='201'],['value3']+df[df['code4']=='201'],['value4']
df['sum_code_301']=df[df['code1']=='301'],['value1']+df[df['code2']=='301'],['value2']+df[df['code3']=='301'],['value3']+df[df['code4']=='301'],['value4']
但是,我收到了以下错误消息:
TypeError: 'Series' objects are mutable, thus they cannot be hashed
由于真正的数据框有 25 个不同的代码(101、201、301..),我需要创建一个 25 列来汇总它们的值。
非常感谢你们的任何帮助,谢谢。 . .
【问题讨论】:
标签: python pandas sum data-analysis