【发布时间】:2024-06-22 01:35:01
【问题描述】:
我想通过使用 foreach 包使下面的代码更高效。我尝试了很长时间,但没有得到与使用 for 循环时相同的结果。我想使用一个嵌套的 foreach 循环,包括并行化......作为输出,我想有两个带有暗淡 [R,b1] 的矩阵,我将非常感谢一些建议!!
n <- c(100, 300, 500)
R <- 100
b0 <- 110
b1 <- seq(0.01, 0.1, length.out = 100)
## all combinations of n and b1
grid <- expand.grid(n, b1)
names(grid) <- c("n", "b1")
calcPower <- function( R, b0, grid) {
cl <- makeCluster(3)
registerDoParallel(cl)
## n and b1 coefficients
n <- grid$n
b1 <- grid$b1
## ensures reproducibility
set.seed(2020)
x <- runif(n, 18, 80)
x.dich <- factor( ifelse( x < median( x), 0, 1))
## enables to store two outputs
solution <- list()
## .options.RNG ensures reproducibility
res <- foreach(i = 1:R, .combine = rbind, .inorder = TRUE, .options.RNG = 666) %dorng% {
p.val <- list()
p.val.d <- list()
for( j in seq_along(b1)) {
y <- b0 + b1[j] * x + rnorm(n, 0, sd = 10)
mod.lm <- lm( y ~ x)
mod.lm.d <- lm( y ~ x.dich)
p.val <- c( p.val, ifelse( summary(mod.lm)$coef[2,4] <= 0.05, 1, 0))
p.val.d <- c( p.val.d, ifelse( summary(mod.lm.d)$coef[2,4] <= 0.05, 1, 0))
}
solution[[1]] <- p.val
solution[[2]] <- p.val.d
return(solution)
}
dp.val <- matrix( unlist(res[,1], use.names = FALSE), R, length(b1), byrow = TRUE)
dp.val.d <- matrix( unlist(res[,2], use.names = FALSE), R, length(b1), byrow = TRUE)
stopCluster(cl)
df <- data.frame(
effectS = b1,
power = apply( dp.val, 2, function(x){ mean(x) * 100}),
power.d = apply( dp.val.d, 2, function(x){ mean(x) * 100}),
n = factor(n))
return(df)
}
## simulation for different n
tmp <- with(grid,
by( grid, n,
calcPower, R = R, b0 = b0))
## combines the 3 results
df.power <- rbind(tmp[[1]], tmp[[2]], tmp[[3]])
【问题讨论】:
标签: r foreach doparallel