【发布时间】:2017-08-18 10:13:15
【问题描述】:
我想使用 Keras 对单个图像进行预测。我已经训练了我的模型,所以我只是在加载权重。
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
import numpy as np
import cv2
# dimensions of our images.
img_width, img_height = 150, 150
def create_model():
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
return model
img = cv2.imread('./test1/1.jpg')
model = create_model()
model.load_weights('./weight.h5')
model.predict(img)
我正在使用以下方式加载图像:
img = cv2.imread('./test1/1.jpg')
并使用模型的预测功能:
model.predict(img)
但我得到了错误:
ValueError: Error when checking : expected conv2d_1_input to have 4 dimensions, but got array with shape (499, 381, 3)
我应该如何继续对单个图像进行预测?
【问题讨论】:
标签: deep-learning keras