【发布时间】:2018-10-27 02:20:09
【问题描述】:
我正在尝试为二进制分类 0 或 1 构建 RNN/LSTM 模型
我的数据集的一个样本(患者编号、时间(单位为毫米/秒)、XY 和 Z 的归一化、峰度、偏度、俯仰、滚动和偏航、标签)。
1,15,-0.248010047716,0.00378335508419,-0.0152548459993,-86.3738760481,0.872322164158,-3.51314800063,0
1,31,-0.248010047716,0.00378335508419,-0.0152548459993,-86.3738760481,0.872322164158,-3.51314800063,0
1,46,-0.267422664673,0.0051143782875,-0.0191247001961,-85.7662354031,1.0928406847,-4.08015176908,0
1,62,-0.267422664673,0.0051143782875,-0.0191247001961,-85.7662354031,1.0928406847,-4.08015176908,0
我尝试过的。
import numpy as np
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from keras.layers import Bidirectional
from keras.preprocessing import sequence
# fix random seed for reproducibility
np.random.seed(7)
train = np.loadtxt("featwithsignalsTRAIN.txt", delimiter=",")
test = np.loadtxt("featwithsignalsTEST.txt", delimiter=",")
x_train = train[:,[2,3,4,5,6,7]]
x_test = test[:,[2,3,4,5,6,7]]
y_train = train[:,8]
y_test = test[:,8]
# create the model
model = Sequential()
model.add(LSTM(20, dropout=0.2, input_dim=6))
model.add(Dense(4, activation = 'sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(x_train, y_train, epochs = 2)
但它给了我以下错误
检查输入时出错:预期 lstm_1_input 为 3 维,但得到的数组形状为 (1415684, 6)
【问题讨论】:
标签: deep-learning classification lstm rnn