【问题标题】:Fable: Extracting the p,d,q specification from an ARIMA model寓言:从 ARIMA 模型中提取 p,d,q 规范
【发布时间】:2020-12-03 03:46:18
【问题描述】:

我一直在使用 tidy 预测包 fable(非常有用)。

我想知道是否有一种简单的方法可以从 mable 中提取 p、d、q 值。

以本指南中的数据为例https://www.mitchelloharawild.com/blog/fable/

library(tidyverse)
library(tsibble)
library(fable)

tourism_state <- tourism %>% 
  group_by(State) %>% 
  summarise(Trips = sum(Trips))

fit <- tourism_state %>% 
  model(arima = ARIMA(Trips))
> fit
# A mable: 8 x 2
# Key:     State [8]
  State                                 arima
  <chr>                               <model>
1 ACT                          <ARIMA(0,1,1)>
2 New South Wales    <ARIMA(0,1,1)(0,1,1)[4]>
3 Northern Territory <ARIMA(1,0,1)(0,1,1)[4]>
4 Queensland                   <ARIMA(2,1,2)>
5 South Australia    <ARIMA(1,0,1)(0,1,1)[4]>
6 Tasmania           <ARIMA(0,0,3)(2,1,0)[4]>
7 Victoria           <ARIMA(0,1,1)(0,1,1)[4]>
8 Western Australia            <ARIMA(0,1,3)>

我知道规格存储在 model[[1]]$fit$spec 下,但如果我有大量模型,我无法找到提取它们的方法

理想情况下我会喜欢

  State                                 arima       p     d       q
  <chr>                               <model>
1 ACT                          <ARIMA(0,1,1)>       0     1       1
2 New South Wales    <ARIMA(0,1,1)(0,1,1)[4]>       0     1       1
3 Northern Territory <ARIMA(1,0,1)(0,1,1)[4]>       1     0       1
4 Queensland                   <ARIMA(2,1,2)>       
5 South Australia    <ARIMA(1,0,1)(0,1,1)[4]>       and so on....
6 Tasmania           <ARIMA(0,0,3)(2,1,0)[4]>
7 Victoria           <ARIMA(0,1,1)(0,1,1)[4]>
8 Western Australia            <ARIMA(0,1,3)>

谢谢!

【问题讨论】:

    标签: r arima fable-r


    【解决方案1】:

    这个怎么样?

    # specificly needed libraries from tidyverse
    library(dplyr)
    library(purrr)
    
    fit %>%
      mutate(map_dfr(arima, c("fit", "spec")))
    
    #> # A mable: 8 x 10
    #> # Key:     State [8]
    #>   State                                 arima     p     d     q     P     D     Q constant period
    #>   <chr>                               <model> <int> <int> <int> <int> <int> <int> <lgl>     <dbl>
    #> 1 ACT                          <ARIMA(0,1,1)>     0     1     1     0     0     0 FALSE         4
    #> 2 New South Wales    <ARIMA(0,1,1)(0,1,1)[4]>     0     1     1     0     1     1 FALSE         4
    #> 3 Northern Territory <ARIMA(1,0,1)(0,1,1)[4]>     1     0     1     0     1     1 FALSE         4
    #> 4 Queensland                   <ARIMA(2,1,2)>     2     1     2     0     0     0 FALSE         4
    #> 5 South Australia    <ARIMA(1,0,1)(0,1,1)[4]>     1     0     1     0     1     1 FALSE         4
    #> 6 Tasmania           <ARIMA(0,0,3)(2,1,0)[4]>     0     0     3     2     1     0 FALSE         4
    #> 7 Victoria           <ARIMA(0,1,1)(0,1,1)[4]>     0     1     1     0     1     1 FALSE         4
    #> 8 Western Australia            <ARIMA(0,1,3)>     0     1     3     0     0     0 FALSE         4
    

    它适用于 R &gt;= 4.0dplyr &gt;= 1.0

    arima 列是一个列表。我们可以使用map从列表中提取数据。

    map 将返回一个列表本身,但使用 map_dfr 您可以返回一个数据帧,mutate 将解释为一组新列以添加到原始数据帧。

    请注意,使用此代码,输出和输入保持相同的类 (mable)。

    【讨论】: