【发布时间】:2024-01-22 04:47:01
【问题描述】:
在某个时间段内可能存在或不存在个人的清理数据方法。我想看看随着时间的推移他们可能存在于第一个时间段或在第一个时间段以外的时间段开始的个人。个人可能在某个时间点之后没有数据,或者数据中有差距。数据中的间隙可能没有一行 NA,而是可能完全从数据集中丢失。我希望能够保留连续出现“n”次且时间间隔少于“n”个(或按特定列名)的个人。
Drop variable in panel data in R conditional based on a defined number of consecutive observations
上面的问题和我的差不多。但是,在某些时期我没有数据而不是所有 NA。这就是为什么计算 NA 是不够的,我研究了及时测量距离。它必须为每个组重置,并且对于不是在 t=1 开始的组来说很困难。
set.seed(5)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
time = seq(1,10),
x = rnorm(100),
z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
count(data3$id)
x freq
1 1 10
2 2 10
3 3 10
4 4 8
5 5 10
6 6 4
7 7 7
8 8 9
9 9 10
10 10 9
如果我希望 gaps=0 并且每个 id 至少有 5 个观察值。然后我只会保留 ids 1,2,3,5,7,9,10。由于所有这些组的 gaps=0,我也会删除 id 6,因为它只有 4 个观察值。
也请告诉我你是从哪里学来的方法,这样我就可以跟着学习更多。
输出:
set.seed(5)
library(plyr)
data<-data.table(y=rnorm(100))
data[sample(1:100, 40),]<-NA
data1 <- data.table(id = rep(1:10, each = 10),
time = seq(1,10),
x = rnorm(100),
z = rnorm(100))
data2<-cbind(data1,data)
data2$row<-1:nrow(data2)
data2a<-subset(data2,row<55|row>62 )
data3<-data2a[-sample(nrow(data2a), 5)]
View(data3)
dt<-data.table(count(data3$id))
dt2<-subset(dt, x!=6 &x!=4)
View(dt2)
dta<-data3[data3$id %in% dt2$x,]
dt3<-subset(dta, id!=8 |time < 7)
View(dt3)
print(dt3)
id time x z y row
1: 1 1 1.17085642 0.21083288 -0.84085548 1
2: 1 2 0.88484486 -0.03329921 NA 2
3: 1 3 -1.31788860 2.02519699 NA 3
4: 1 4 -1.64325094 -0.37078675 0.07014277 4
5: 1 5 1.05925039 -1.57823445 NA 5
6: 1 6 0.29008358 -0.12157195 NA 6
7: 1 7 -0.40003350 -1.79667682 NA 7
8: 1 8 1.24309578 -0.47559154 -0.63537131 8
9: 1 9 -1.36641052 -0.88410232 -0.28577363 9
10: 1 10 -1.44141330 -3.49805898 NA 10
11: 2 1 1.34854906 -0.38198337 NA 11
12: 2 2 -1.97852834 0.97768813 NA 12
13: 2 3 -1.24095058 -0.55804095 NA 13
14: 2 4 -0.10403913 -0.62645515 NA 14
15: 2 5 0.73297296 -0.53045123 -1.07176004 15
16: 2 6 0.45567962 1.89762159 -0.13898614 16
17: 2 7 0.28807955 1.39554068 -0.59731309 17
18: 2 8 -1.07369091 -0.74602587 NA 18
19: 2 9 0.64874254 -0.30557308 NA 19
20: 2 10 0.29916228 1.16967817 -0.25935541 20
21: 3 1 -0.79599499 0.30438718 0.90051195 21
22: 3 2 -0.02935340 -0.11749825 0.94186939 22
23: 3 3 2.18023570 -0.06008553 1.46796190 23
24: 3 4 0.95741847 1.47093895 NA 24
25: 3 5 -0.30504863 -1.47814761 0.81900893 25
26: 3 6 -0.41840334 -0.68361295 -0.29348185 26
27: 3 7 0.09995405 0.46054060 NA 27
28: 3 8 -0.22980962 -0.18150193 NA 28
29: 3 9 -1.41521488 -1.15881631 -0.65708209 29
30: 3 10 -0.39259886 0.40901892 -0.85279544 30
31: 5 1 -2.62134481 -1.45565758 1.55006037 41
32: 5 2 2.24625462 0.09378492 NA 42
33: 5 3 0.09343168 0.98234922 NA 43
34: 5 4 1.62728009 -0.59671016 NA 44
35: 5 5 -0.51091755 0.07480485 NA 45
36: 5 6 -0.65938084 2.19742943 0.56222336 46
37: 5 7 -0.04019016 0.79502321 -0.88700851 47
38: 5 8 -0.11869400 -0.53894221 -0.46024458 48
39: 5 9 -0.01965686 -1.60128318 -0.72432849 49
40: 5 10 -0.48567849 -0.73137357 NA 50
41: 7 4 0.97438263 0.96691960 0.49636154 64
42: 7 5 -1.26447348 -0.42332730 -0.76005793 65
43: 7 6 -0.27742142 -0.83159945 -0.34138627 66
44: 7 7 -0.18939869 1.39995727 -2.10232912 67
45: 7 8 -0.38402495 0.01701396 NA 68
46: 7 9 0.74058802 1.84749695 NA 69
47: 7 10 -1.16833839 -0.68633938 -0.27966611 70
48: 8 1 0.66753870 -0.21872403 -0.20409732 71
49: 8 2 0.36623695 0.68259291 -0.22561419 72
50: 8 3 -0.51494299 0.52413002 NA 73
51: 8 4 0.45056824 0.08054998 NA 74
52: 8 5 -0.18772038 0.05378554 NA 75
53: 8 6 1.33906937 -0.73725899 NA 76
54: 9 1 -0.11367818 1.21014609 NA 81
55: 9 2 -0.29510083 0.18865716 NA 82
56: 9 3 0.98916847 1.96249867 0.97552910 83
57: 9 4 -0.77513181 0.13871194 NA 84
58: 9 5 0.27589827 -1.57862735 0.67568448 85
59: 9 6 0.41078165 -0.79702127 NA 86
60: 9 7 0.61118316 1.22435388 2.38723265 87
61: 9 8 0.93657072 -0.36533356 -0.47343201 88
62: 9 9 -0.36754170 -0.16259028 -0.07577256 89
63: 9 10 0.74037676 0.56047918 NA 90
64: 10 2 0.62913443 1.23863449 -1.06241117 92
65: 10 3 0.52774631 0.76743575 0.55703387 93
66: 10 4 -0.47225530 -1.08740911 0.90073058 94
67: 10 5 0.82371516 0.06750377 0.98994568 95
68: 10 6 -0.42778825 1.60514057 0.38360809 96
69: 10 7 -0.14264393 1.23222943 -0.34658381 97
70: 10 8 1.41878305 -0.37911379 -0.54018925 98
71: 10 9 0.48713390 -1.34986658 -0.18255559 99
72: 10 10 0.60344145 0.36491810 NA 100
【问题讨论】:
标签: r time-series data-cleaning