【发布时间】:2026-02-14 13:20:04
【问题描述】:
我的问题与刻面有关。在下面的示例代码中,我查看了一些分面散点图,然后尝试在每个方面叠加信息(在本例中为平均线)。
tl;dr 版本是我的尝试失败了。要么我添加的平均线计算所有数据(不尊重 facet 变量),要么我尝试编写一个公式并且 R 抛出一个错误,然后是对我母亲的尖锐和特别贬低的 cmets。
library(ggplot2)
# Let's pretend we're exploring the relationship between a car's weight and its
# horsepower, using some sample data
p <- ggplot()
p <- p + geom_point(aes(x = wt, y = hp), data = mtcars)
print(p)
# Hmm. A quick check of the data reveals that car weights can differ wildly, by almost
# a thousand pounds.
head(mtcars)
# Does the difference matter? It might, especially if most 8-cylinder cars are heavy,
# and most 4-cylinder cars are light. ColorBrewer to the rescue!
p <- p + aes(color = factor(cyl))
p <- p + scale_color_brewer(pal = "Set1")
print(p)
# At this point, what would be great is if we could more strongly visually separate
# the cars out by their engine blocks.
p <- p + facet_grid(~ cyl)
print(p)
# Ah! Now we can see (given the fixed scales) that the 4-cylinder cars flock to the
# left on weight measures, while the 8-cylinder cars flock right. But you know what
# would be REALLY awesome? If we could visually compare the means of the car groups.
p.with.means <- p + geom_hline(
aes(yintercept = mean(hp)),
data = mtcars
)
print(p.with.means)
# Wait, that's not right. That's not right at all. The green (8-cylinder) cars are all above the
# average for their group. Are they somehow made in an auto plant in Lake Wobegon, MN? Obviously,
# I meant to draw mean lines factored by GROUP. Except also obviously, since the code below will
# print an error, I don't know how.
p.with.non.lake.wobegon.means <- p + geom_hline(
aes(yintercept = mean(hp) ~ cyl),
data = mtcars
)
print(p.with.non.lake.wobegon.means)
必须有一些我缺少的简单解决方案。
【问题讨论】: