【发布时间】:2025-12-13 08:45:01
【问题描述】:
我正在使用 Keras 中的自定义数据加载器创建自定义算法。我知道,当您尝试在模型的内部方法中访问张量时,您通常会在打印张量的形状时得到None,通常在批处理轴上,因为批处理大小可以是可变的。我创建了一个更新渐变的自定义方法,只是为了进行完整性检查,我试图在程序执行时打印该轴形状的实际值。我不知道该怎么做。
这里有一些代码,看看我在哪里写的THIS LINE。此代码将打印出以下输出,其中将批处理轴显示为NONE。仅出于调试目的,我实际上想看看代码运行时这个值是多少,我该怎么做?
(无, 4, 100) (无, 100) (无, 100, 100) (无, 100) (无, 100, 100) (无, 100) (无, 100, 1) (无, 1)
class CustomModel(keras.Model):
def train_step(self, data):
# Unpack the data. Its structure depends on your model and
# on what you pass to `fit()`.
x, y = data
tao = 1
with tf.GradientTape() as tape:
y_pred = self(x, training=True) # Forward pass
# Compute the loss value
# (the loss function is configured in `compile()`)
loss = self.compiled_loss(y, y_pred, regularization_losses=self.losses)
gradients = tape.jacobian(loss, self.trainable_variables)
new_gradients = []
for grad in gradients:
print(grad.shape) # <--- THIS LINE
q1 = K.mean( grad[:env_siz], axis=0 )
q2 = K.mean( grad[env_siz:], axis=0 )
Q = K.mean( K.stack((K.sign(q1), K.sign(q2))), axis=0 ) # 1 means all gradients in same direction on that axis
P = tf.where( tf.abs(Q) >= tao, K.mean( K.stack((q1, q2)), axis=0 ), 0)
# print(P)
new_gradients.append( P )
# Compute gradients
trainable_vars = self.trainable_variables
# gradients = tape.gradient(loss, trainable_vars)
# Update weights
self.optimizer.apply_gradients(zip(new_gradients, trainable_vars))
# Update metrics (includes the metric that tracks the loss)
self.compiled_metrics.update_state(y, y_pred)
# Return a dict mapping metric names to current value
return {m.name: m.result() for m in self.metrics}
【问题讨论】:
标签: python tensorflow keras