【发布时间】:2025-12-19 10:50:12
【问题描述】:
背景
我正在尝试使用负采样训练 Skip-gram word2vec 模型。据我了解,我需要生成一对(目标、上下文)和一个标签,其中 0 = 不在上下文中,1 = 在上下文中。
我不确定的:
我们应该逐句制作skipgram对吗?还是我们应该将句子扁平化为一个大句子并从中生成skipgrams? 换句话说,生成的情侣是否应该跨越句子?
下面两个代码 sn-ps 之间的唯一区别是其中一个生成跨越两个句子的对,如下所示:
data = ['this is some stuff.', 'I have a cookie.']
结果:
...SNIP...
[some, have]
[stuff, this]
[stuff, is]
[stuff, some]
[stuff, i]
[stuff, have]
[stuff, a]
[i, is]
[i, some]
[i, stuff]
[i, have]
[i, a]
[i, cookie]
[have, some]
[have, stuff]
...SNIP...
我们可以看到有跨句子的情侣
或者我们可以有不跨越句子的情侣:
...SNIP...
[some, stuff]
[stuff, this]
[stuff, is]
[stuff, some]
[i, have]
[i, a]
[i, cookie]
[have, i]
[have, a]
[have, cookie]
...SNIP...
到目前为止我做了什么。
获取数据
from sklearn.datasets import fetch_20newsgroups
newsgroups_train = fetch_20newsgroups(subset='train',
remove=('headers', 'footers', 'quotes'))
初始化一些变量
vocabulary_size = 8
window_size = 3
neg_samples = 0.0
将句子拼成一个大序列
sents = newsgroups_train.data
tokenizer = Tokenizer(num_words= vocabulary_size, lower=True, filters=filters)
tokenizer.fit_on_texts(sents)
word_index_inv = {v: k for k, v in tokenizer.word_index.items()}
sequences = tokenizer.texts_to_sequences(sents)
couples, labels = skipgrams(list(itertools.chain.from_iterable(sequences)), vocabulary_size=vocabulary_size, window_size=window_size, shuffle=False, negative_samples=neg_samples)
word_target, word_context = zip(*couples)
word_target = np.array(word_target, dtype="int32")
word_context = np.array(word_context, dtype="int32")
或:
将数据集拆分为句子并根据每个句子生成对。
sents = [nltk.sent_tokenize(s) for s in newsgroups_train.data]
sents = list(itertools.chain.from_iterable(sents))
tokenizer = Tokenizer(num_words= vocabulary_size, lower=True, filters=filters)
tokenizer.fit_on_texts(sents)
word_index_inv = {v: k for k, v in tokenizer.word_index.items()}
sequences = tokenizer.texts_to_sequences(sents)
couples = []
labels = []
for seq in sequences:
c,l = skipgrams(seq, vocabulary_size=vocabulary_size,
window_size=window_size, shuffle=False,
negative_samples=neg_samples)
couples.extend(c)
labels.extend(l)
word_target, word_context = zip(*couples)
word_target = np.array(word_target, dtype="int32")
word_context = np.array(word_context, dtype="int32")
打印出我们的话
for couple in couples:
print('[{}, {}]'.format(word_index_inv[couple[0]], word_index_inv[couple[1]]))
【问题讨论】:
标签: python keras word2vec word-embedding