听起来您正在寻找的是Multivariate Normal Distribution。这在 scipy 中实现为scipy.stats.multivariate_normal。请务必记住,您将协方差矩阵传递给函数。所以为了简单起见,保持非对角元素为零:
[X variance , 0 ]
[ 0 ,Y Variance]
这是一个使用此函数并生成结果分布的 3D 图的示例。我添加了颜色图以便更轻松地查看曲线,但可以随意删除它。
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import multivariate_normal
from mpl_toolkits.mplot3d import Axes3D
#Parameters to set
mu_x = 0
variance_x = 3
mu_y = 0
variance_y = 15
#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
pos = np.empty(X.shape + (2,))
pos[:, :, 0] = X; pos[:, :, 1] = Y
rv = multivariate_normal([mu_x, mu_y], [[variance_x, 0], [0, variance_y]])
#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, rv.pdf(pos),cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
给你这个情节:
编辑下面使用的方法在 Matplotlib v2.2 中已弃用并在 v3.1 中删除
可通过matplotlib.mlab.bivariate_normal 获得更简单的版本
它采用以下参数,因此您无需担心矩阵
matplotlib.mlab.bivariate_normal(X, Y, sigmax=1.0, sigmay=1.0, mux=0.0, muy=0.0, sigmaxy=0.0)
这里 X 和 Y 再次是网格网格的结果,因此使用它来重新创建上面的图:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.mlab import bivariate_normal
from mpl_toolkits.mplot3d import Axes3D
#Parameters to set
mu_x = 0
sigma_x = np.sqrt(3)
mu_y = 0
sigma_y = np.sqrt(15)
#Create grid and multivariate normal
x = np.linspace(-10,10,500)
y = np.linspace(-10,10,500)
X, Y = np.meshgrid(x,y)
Z = bivariate_normal(X,Y,sigma_x,sigma_y,mu_x,mu_y)
#Make a 3D plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X, Y, Z,cmap='viridis',linewidth=0)
ax.set_xlabel('X axis')
ax.set_ylabel('Y axis')
ax.set_zlabel('Z axis')
plt.show()
给予: