【发布时间】:2017-09-07 05:24:58
【问题描述】:
我正在尝试建立一个连体网络来比较两个图像样本。我遵循了caffe 中的 MNIST 示例。
我想要做的不是使用全连接层,而是全卷积连体网络。我这样做只是为了学习和理解深度学习。
我创建了自己的自定义网络,它采用32 x 32 大小的 RGB 图像补丁,并通过附加的 Prototxt 文件中定义的网络的多个层运行。请注意保持简短,我删除了网络的另一半,它只是一个镜像。此外,我正在尝试学习如何在卷积层中使用填充,因此我也在此处的示例中尝试这样做。你会看到我在conv3 层上放置了一个 1 的填充。
label1 和label2 相同,所以我使用静默层来阻止 label2
layer {
name: "data1"
type: "Data"
top: "data1"
top: "label"
include {
phase: TRAIN
}
data_param {
source: "Desktop/training/lmdb/train_1"
batch_size: 512
backend: LMDB
}
}
layer {
name: "data2"
type: "Data"
top: "data2"
top: "label2"
include {
phase: TRAIN
}
data_param {
source: "/Desktop/training/lmdb/train_2"
batch_size: 512
backend: LMDB
}
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data1"
top: "conv1"
param {
name: "conv1_w"
lr_mult: 1
}
param {
name: "conv1_b"
lr_mult: 2
}
convolution_param {
num_output: 32
pad: 0
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 2
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
param {
name: "conv2_w"
lr_mult: 1
}
param {
name: "conv2_b"
lr_mult: 2
}
convolution_param {
num_output: 64
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "conv3"
type: "Convolution"
bottom: "conv2"
top: "conv3"
param {
name: "conv3_w"
lr_mult: 1
}
param {
name: "conv3_b"
lr_mult: 2
}
convolution_param {
num_output: 128
pad: 1
kernel_size: 3
stride: 2
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
# layer {
# name: "dropout"
# type: "Dropout"
# bottom: "conv3"
# top: "dropout"
# dropout_param {
# dropout_ratio: 0.5
# }
# }
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
param {
name: "conv4_w"
lr_mult: 1
}
param {
name: "conv4_b"
lr_mult: 2
}
convolution_param {
num_output: 1
pad: 0
kernel_size: 1
stride: 1
weight_filler {
type: "xavier"
std: 0.03
}
bias_filler {
type: "constant"
value: 0.2
}
}
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv4"
top: "pool2"
pooling_param {
pool: AVE
kernel_size: 7
stride: 1
}
}
#################
layer {
name: "loss"
type: "ContrastiveLoss"
bottom: "pool2"
bottom: "pool2_p"
bottom: "label"
top: "loss"
contrastive_loss_param {
margin: 1
}
include {
phase: TRAIN
}
}
我对以下几点感到困惑:
- 在卷积层上添加填充是否安全,还是会产生破坏性影响?
- 在我读到的siamaese network的一些论文中,他们在全连接层之后使用了L2-Normalization。我没有在 caffe 上找到任何 L2-Normalization 层,但我支持 LRN 可以通过设置
alpha = 1和beta = 0.5来做同样的事情。 - 在我的网络中,我只是平均汇集了
conv4层,并使用它来计算使用ContrastiveLoss 的损失。这可以工作吗,或者我需要标准化conv4的输出,或者我在这里做错了什么。 - 卷积层的输出可以直接输入损失函数吗?
非常感谢您帮助我指明正确的方向。此外,我正在使用一些细胞的大约 50K 块的样本图像,因为它是分类的,所以我无法发布。补丁大小约为25x25,所以我调整为32x32
【问题讨论】:
标签: python c++ image-processing deep-learning caffe