【发布时间】:2020-01-01 17:56:30
【问题描述】:
我正在尝试根据 2010 年至 2019 年 Spotify 上热门歌曲的持续时间和持久性,对它们的流行度使用逻辑回归,这些歌曲的数据是从 .csv 文件中收集的。基本上,由于每首歌曲的流行度值都是数字,因此我将它们中的每一个都转换为二进制数“0”到“1”。如果热门歌曲的流行度值小于 70,我会将其当前值替换为 0,如果其值大于 70,则反之亦然。出于某种原因,因为我的其余代码在创建 sigmoid 时非常标准函数,最终结果是一条直线而不是 sigmoid 曲线。
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
df = pd.read_csv('top10s [SubtitleTools.com] (2).csv')
BPM = df.bpm
BPM = np.array(BPM)
Energy = df.nrgy
Energy = np.array(Energy)
Dance = df.dnce
Dance = np.array(Dance)
dB = df.dB
dB = np.array(dB)
Live = df.live
Live = np.array(Live)
Valence = df.val
Valence = np.array(Valence)
Acous = df.acous
Acous = np.array(Acous)
Speech = df.spch
Speech = np.array(Speech)
df.loc[df['popu'] <= 70, 'popu'] = 0
df.loc[df['popu'] > 70, 'popu'] = 1
def Logistic_Regression(X, y, iterations, alpha):
ones = np.ones((X.shape[0], ))
X = np.vstack((ones, X))
X = X.T
b = np.zeros(X.shape[1])
for i in range(iterations):
z = np.dot(X, b)
p_hat = sigmoid(z)
gradient = np.dot(X.T, (y - p_hat))
b = b + alpha * gradient
if (i % 1000 == 0):
print('LL, i ', log_likelihood(X, y, b), i)
return b
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def log_likelihood(X, y, b):
z = np.dot(X, b)
LL = np.sum(y*z - np.log(1 + np.exp(z)))
return LL
def LR1():
Dur = df.dur
Dur = np.array(Dur)
Pop = df.popu
Pop = [int(i) for i in Pop]; Pop = np.array(Pop)
plt.figure(figsize=(10,8))
colormap = np.array(['r', 'b'])
plt.scatter(Dur, Pop, c = colormap[Pop], alpha = .4)
b = Logistic_Regression(Dur, Pop, iterations = 8000, alpha = 0.00005)
print('Done')
p_hat = sigmoid(np.dot(Dur, b[1]) + b[0])
idxDur = np.argsort(Dur)
plt.plot(Dur[idxDur], p_hat[idxDur])
plt.show()
LR1()
df
【问题讨论】:
-
由于您的 sigmoid 以 ~0 或 ~1 的形式出现,因此 (np.dot(Dur, b[1]) + b[0]) 的参数必须是大的正值或负值.也许你错过了标准化。
标签: python pandas numpy sigmoid