【发布时间】:2025-11-26 22:25:02
【问题描述】:
使用pipeline和GridSearchCV确定最佳参数后,我如何pickle/joblib这个过程以后再使用?当它是一个单一的分类器时,我知道如何做到这一点......
from sklearn.externals import joblib
joblib.dump(clf, 'filename.pkl')
但是在执行和完成gridsearch 之后,如何以最佳参数保存这个整体pipeline?
我试过了:
-
joblib.dump(grid, 'output.pkl')- 但这抛弃了每个网格搜索 尝试(许多文件) -
joblib.dump(pipeline, 'output.pkl')- 但我 不要认为它包含最好的参数
X_train = df['Keyword']
y_train = df['Ad Group']
pipeline = Pipeline([
('tfidf', TfidfVectorizer()),
('sgd', SGDClassifier())
])
parameters = {'tfidf__ngram_range': [(1, 1), (1, 2)],
'tfidf__use_idf': (True, False),
'tfidf__max_df': [0.25, 0.5, 0.75, 1.0],
'tfidf__max_features': [10, 50, 100, 250, 500, 1000, None],
'tfidf__stop_words': ('english', None),
'tfidf__smooth_idf': (True, False),
'tfidf__norm': ('l1', 'l2', None),
}
grid = GridSearchCV(pipeline, parameters, cv=2, verbose=1)
grid.fit(X_train, y_train)
#These were the best combination of tuning parameters discovered
##best_params = {'tfidf__max_features': None, 'tfidf__use_idf': False,
## 'tfidf__smooth_idf': False, 'tfidf__ngram_range': (1, 2),
## 'tfidf__max_df': 1.0, 'tfidf__stop_words': 'english',
## 'tfidf__norm': 'l2'}
【问题讨论】:
标签: python scikit-learn pipeline grid-search