【发布时间】:2024-05-20 18:05:02
【问题描述】:
首先,我将解释我要做什么。首先,我将输入文件(第一个 CSV 文件)放入 mapreduce 作业中,其他 CSV 文件将放入映射器类中。但事情就是这样。 mapper 类中的代码不能正常工作,就像右下角的代码一样。我想组合两个 CSV 文件以在每个 CSV 文件中使用多个列。 例如,1个文件有BibNum(用户账号)、checkoutdatetime(图书checkoutdatetime)和itemtype(图书itemtype),2个CSV文件有BibNum(用户账号)、Title(图书标题)、Itemtype等。我想知道下个月可能会借到哪本书。如果您知道可以合并两个 CSV 文件并为我提供任何帮助的方法,我将不胜感激。如果您对我的代码有任何疑问,请告诉我,我会尽力澄清。
Path p = new Path("hdfs://0.0.0.0:8020/user/training/Inventory_Sample");
FileSystem fs = FileSystem.get(conf);
BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(p)));
try {
String BibNum = "Test";
//System.out.print("test");
while(br.readLine() != null){
//System.out.print("test");
if(!br.readLine().startsWith("BibNumber")) {
String subject[] = br.readLine().split(",");
BibNum = subject[0];
}
}
.
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Date;
import java.util.HashMap;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class StubMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private Text outkey = new Text();
//private MinMaxCountTuple outTuple = new MinMaxCountTuple();
//String csvFile = "hdfs://user/training/Inventory_Sample";
@Override
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
//conf.addResource("/etc/hadoop/conf/core-site.xml");
//conf.addResource("/etc/hadoop/conf/hdfs-site.xml");
Path p = new Path("hdfs://0.0.0.0:8020/user/training/Inventory_Sample");
FileSystem fs = FileSystem.get(conf);
BufferedReader br = new BufferedReader(new InputStreamReader(fs.open(p)));
try {
String BibNum = "Test";
//System.out.print("test");
while(br.readLine() != null){
//System.out.print("test");
if(!br.readLine().startsWith("BibNumber")) {
String subject[] = br.readLine().split(",");
BibNum = subject[0];
}
}
if(value.toString().startsWith("BibNumber"))
{
return;
}
String data[] = value.toString().split(",");
String BookType = data[2];
String DateTime = data[5];
SimpleDateFormat frmt = new SimpleDateFormat("MM/dd/yyyy hh:mm:ss a");
Date creationDate = frmt.parse(DateTime);
frmt.applyPattern("dd-MM-yyyy");
String dateTime = frmt.format(creationDate);
//outkey.set(BookType + " " + dateTime);
outkey.set(BibNum + " " + BookType + " " + dateTime);
//outUserId.set(userId);
context.write(outkey, new IntWritable(1));
} catch (Exception e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
finally{
br.close();
}
}
}
【问题讨论】:
标签: java csv file-io mapreduce