以下代码包含一个 Matrix 类实现,旨在展示 C++ 的一些特性(如唯一指针、随机数和流格式)。当我想稍微解释一下该语言时,我经常使用它。也许它可以帮助你。
#include <cassert>
#include <iostream>
#include <iomanip>
#include <memory>
#include <random>
// Pedagogical implementation of matrix type.
class Matrix {
public:
// Create a rows-by-cols matrix filled with random numbers in (-1, 1).
static Matrix Random(std::size_t rows, std::size_t cols) {
Matrix m(rows, cols);
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_real_distribution<double> dis(-1, 1);
for (std::size_t row = 0; row < rows; ++row) {
for (std::size_t col = 0; col < cols; ++col) {
m(row, col) = dis(gen);
}
}
return m;
}
// Build an uninitialized rows-by-cols matrix.
Matrix(std::size_t rows, std::size_t cols)
: m_data { std::make_unique<double[]>(rows * cols) },
m_rows { rows },
m_cols { cols }
{
assert(m_rows > 0);
assert(m_cols > 0);
}
// Return number of rows
std::size_t rows() const { return m_rows; }
// Return number of columns
std::size_t cols() const { return m_cols; }
// Value at (row, col)
double operator()(std::size_t row, std::size_t col) const {
assert(row < rows());
assert(col < cols());
return m_data[row * cols() + col];
}
// Reference to value at (row, col)
double& operator()(std::size_t row, std::size_t col) {
assert(row < rows());
assert(col < cols());
return m_data[row * cols() + col];
}
// Matrix multiply
Matrix operator*(const Matrix& other) const {
assert(cols() == other.rows());
Matrix out(rows(), other.cols());
for (std::size_t i = 0; i < rows(); ++i) {
for (std::size_t j = 0; j < other.cols(); ++j) {
double sum { 0 };
for (std::size_t k = 0; k < cols(); ++k) {
sum += (*this)(i, k) * other(k, j);
}
out(i, j) = sum;
}
}
return out;
}
private:
std::unique_ptr<double[]> m_data; // will cleanup after itself
const std::size_t m_rows;
const std::size_t m_cols;
};
// Pretty-print a matrix
std::ostream& operator<<(std::ostream& os, const Matrix& m) {
os << std::scientific << std::setprecision(16);
for (std::size_t row = 0; row < m.rows(); ++row) {
for (std::size_t col = 0; col < m.cols(); ++col) {
os << std::setw(23) << m(row, col) << " ";
}
os << "\n";
}
return os;
}
int main() {
Matrix A = Matrix::Random(3, 4);
Matrix B = Matrix::Random(4, 2);
std::cout << "A\n" << A
<< "B\n" << B
<< "A * B\n" << (A * B);
}
可能的输出:
$ clang++ matmul.cpp -std=c++17 -Ofast -march=native -Wall -Wextra
$ ./a.out
A
1.0367049464391398e-01 7.4917987082978588e-03 -2.7966084757805687e-01 -7.2325095373639048e-01
2.2478938813996119e-01 8.4194832286446353e-01 5.3602376615184033e-01 7.1132727553003439e-01
1.9608747339865196e-01 -6.4829263198209253e-01 -2.7477471919710350e-01 1.2721104074473044e-01
B
-8.5938605801284385e-01 -6.2981285198013204e-01
-6.0333085647033191e-01 -6.8234173530317577e-01
-1.2614486249714407e-01 -3.3875904433100934e-01
-6.9618174970366520e-01 6.6785401241316045e-01
A * B
4.4517888255515814e-01 -4.5869338680118737e-01
-1.2639839804611623e+00 -4.2259184895688506e-01
1.6871952235091500e-01 4.9689953389829533e-01