【发布时间】:2023-08-16 10:40:01
【问题描述】:
我已经在 Encog 中创建并学习了自动编码器,并尝试将其拆分为几部分:编码器和解码器部分。不幸的是,我无法得到它,并且我不断收到奇怪的不正确数据(比较将一次网络应用于数据和两次数据的结果 -> enc -> dec)。
我尝试使用简单的 GetWeight 和 SetWeight 来实现,但结果不正确。在 encog 文档中找到的解决方案 - 初始化平面网络对我来说不清楚(我无法让它工作)。
public static BasicNetwork getEncoder(BasicNetwork net)
{
var enc = new BasicNetwork();
enc.AddLayer(new BasicLayer(null, true, net.GetLayerNeuronCount(0)));
enc.AddLayer(new BasicLayer(new ActivationSigmoid(), true, net.GetLayerNeuronCount(1)));
enc.AddLayer(new BasicLayer(new ActivationSigmoid(), false, net.GetLayerNeuronCount(2)));
enc.Structure.FinalizeStructure ();
var weights1 = net.Structure.Flat.Weights;
var weights2 = enc.Structure.Flat.Weights;
var idx1 = net.Structure.Flat.WeightIndex;
var idx2 = enc.Structure.Flat.WeightIndex;
for(var i = 0; i < 1; i++)
{
int n = net.GetLayerNeuronCount(i);
int m = net.GetLayerNeuronCount(i + 1);
Console.WriteLine("Decoder: {0} - {1}", n, m);
for(var j = 0; j < n; j++)
{
for(var k = 0; k < m; k++)
{
weights1 [idx1[i] + j * m + k] = weights2 [idx2[i] + j * m * k];
}
}
}
return enc;
}
AutoEncoder 的完整旧式(设置/获取权重)代码:
using System;
using Encog.Engine.Network.Activation;
using Encog.ML.Data;
using Encog.ML.Data.Basic;
using Encog.ML.Train;
using Encog.Neural.Networks;
using Encog.Neural.Networks.Layers;
using Encog.Neural.Networks.Training.Propagation.Resilient;
namespace engine
{
public class AutoEncoder
{
private int k = 0;
public IMLDataSet trainingSet
{
get;
set;
}
public AutoEncoder(int k)
{
this.k = k;
}
public static BasicNetwork getDecoder(BasicNetwork net)
{
var dec = new BasicNetwork();
dec.AddLayer(new BasicLayer(null, true, net.GetLayerNeuronCount(1)));
dec.AddLayer(new BasicLayer(new ActivationSigmoid(), true, net.GetLayerNeuronCount(2)));
dec.Structure.FinalizeStructure();
for(var i = 1; i < 2; i++)
{
int n = net.GetLayerNeuronCount(i);
int m = net.GetLayerNeuronCount(i + 1);
Console.WriteLine("Decoder: {0} - {1}", n, m);
for(var j = 0; j < n; j++)
{
for(var k = 0; k < m; k++)
{
dec.SetWeight(i - 1, j, k, net.GetWeight(i, j, k));
}
}
}
return dec;
}
public static BasicNetwork getEncoder(BasicNetwork net)
{
var enc = new BasicNetwork();
enc.AddLayer(new BasicLayer(null, true, net.GetLayerNeuronCount(0)));
enc.AddLayer(new BasicLayer(new ActivationSigmoid(), true, net.GetLayerNeuronCount(1)));
enc.Structure.FinalizeStructure();
for(var i = 0; i < 1; i++)
{
int n = net.GetLayerNeuronCount(i);
int m = net.GetLayerNeuronCount(i + 1);
Console.WriteLine("Encoder: {0} - {1}", n, m);
for(var j = 0; j < n; j++)
{
for(var k = 0; k < m; k++)
{
enc.SetWeight(i, j, k, net.GetWeight(i, j, k));
}
}
}
return enc;
}
public BasicNetwork learn(double[][] data,
double eps = 1e-6,
long trainMaxIter = 10000)
{
int n = data.Length;
int m = data[0].Length;
double[][] output = new double[n][];
for(var i = 0; i < n; i++)
{
output[i] = new double[m];
data[i].CopyTo(output[i], 0);
}
var network = new BasicNetwork();
network.AddLayer(new BasicLayer(null, true, m));
network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, k));
network.AddLayer(new BasicLayer(new ActivationSigmoid(), true, m));
network.Structure.FinalizeStructure();
network.Reset();
trainingSet = new BasicMLDataSet(data, output);
IMLTrain train = new ResilientPropagation(network, trainingSet);
int epoch = 1;
do
{
train.Iteration();
Console.WriteLine(@"Epoch #" + epoch + @" Error:" + train.Error);
epoch++;
} while(train.Error > eps && epoch < trainMaxIter);
train.FinishTraining();
return network;
}
}
}
我怎样才能正确地从自动编码器中只提取两个第一层用于编码器,然后从一个用于解码器的最后两个层?
【问题讨论】:
标签: encog autoencoder