【发布时间】:2018-05-14 23:17:02
【问题描述】:
我正在尝试将双向 LSTM 权重用于 2 个非常相似的计算,但我遇到了一个错误并且不知道我做错了什么。 我有一个基本模块的课程:
class BasicAttn(object):
def __init__(self, keep_prob, value_vec_size):
self.rnn_cell_fw = rnn_cell.LSTMCell(value_vec_size/2, reuse=True)
self.rnn_cell_fw = DropoutWrapper(self.rnn_cell_fw, input_keep_prob=self.keep_prob)
self.rnn_cell_bw = rnn_cell.LSTMCell(value_vec_size/2, reuse=True)
self.rnn_cell_bw = DropoutWrapper(self.rnn_cell_bw, input_keep_prob=self.keep_prob)
def build_graph(self, values, values_mask, keys):
blended_reps = compute_blended_reps()
with tf.variable_scope('BasicAttn_BRNN', reuse=True):
(fw_out, bw_out), _ =
tf.nn.bidirectional_dynamic_rnn(self.rnn_cell_fw, self.rnn_cell_bw, blended_reps, dtype=tf.float32, scope='BasicAttn_BRNN')
然后,在构建图形时调用模块
attn_layer_start = BasicAttn(...)
blended_reps_start = attn_layer_start.build_graph(...)
attn_layer_end = BasicAttn(...)
blended_reps_end = attn_layer_end.build_graph(...)
但我收到错误消息,说 TensorFlow 无法重用 RNN?
ValueError: Variable QAModel/BasicAttn_BRNN/BasicAttn_BRNN/fw/lstm_cell/kernel does not exist, or was not created with tf.get_variable(). Did you mean to set reuse=tf.AUTO_REUSE in VarScope
代码很多,所以我把我认为不必要的部分删掉了。
【问题讨论】:
标签: python tensorflow deep-learning lstm rnn