【问题标题】:Predicting unknown faces in face recognition人脸识别中的未知人脸预测
【发布时间】:2016-07-05 00:48:52
【问题描述】:

我正在尝试实现一个卷积神经网络来识别人脸。问题是我想训练 10 个类,并且能够在测试时预测超过 10 个类(例如 20 个类)。

如何在不影响识别旧文件的测试准确率的情况下做到这一点?因为我的测试准确率很低,有时甚至为 0。


这是我的代码。

batch_size = 16
patch_size = 5
depth = 16
num_hidden = 128
num_labels = 12
num_channels = 1 

def reformat(dataset, labels):
  dataset = dataset.reshape(
    (-1, IMAGE_SIZE_H, IMAGE_SIZE_W, num_channels)).astype(np.float32)


  labels = (np.arange(num_labels) == labels[:,None]).astype(np.float32)

def accuracy(predictions, labels):

  return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1))
          / predictions.shape[0])   


graph = tf.Graph()

with graph.as_default():

  # Input data.

  tf_train_dataset = tf.placeholder(
    tf.float32, shape=(batch_size, IMAGE_SIZE_H, IMAGE_SIZE_W, num_channels))
  print("tf_train_dataset",tf_train_dataset)
  tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels))
  tf_valid_dataset = tf.constant(valid_dataset)
  tf_test_dataset = tf.constant(test_dataset)

  layer1_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, num_channels, depth], stddev=0.1))
  layer1_biases = tf.Variable(tf.zeros([depth]))

  layer2_weights = tf.Variable(tf.truncated_normal(
      [patch_size, patch_size, depth, depth], stddev=0.1))
  layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth]))

  layer3_weights = tf.Variable(tf.truncated_normal(
      [IMAGE_SIZE_H // 16 * IMAGE_SIZE_W // 16 * depth, num_hidden], stddev=0.1))
  layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden]))

  layer4_weights = tf.Variable(tf.truncated_normal(
      [num_hidden, num_labels], stddev=0.1))

  layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_labels]))

    conv_1 = tf.nn.conv2d(data, layer1_weights, [1, 2, 2, 1], padding='SAME')
    hidden_1 = tf.nn.relu(conv_1 + layer1_biases)
    pool_1 = tf.nn.max_pool(hidden_1,ksize = [1,2,2,1], strides= [1,2,2,1],padding ='SAME' )
    conv_2 = tf.nn.conv2d(pool_1, layer2_weights, [1, 2, 2, 1], padding='SAME')
    hidden_2 = tf.nn.relu(conv_2 + layer2_biases)
    pool_2 = tf.nn.max_pool(hidden_2,ksize = [1,2,2,1], strides= [1,2,2,1],padding ='SAME' )

    shape = pool_2.get_shape().as_list()
    reshape = tf.reshape(pool_2, [shape[0], shape[1] * shape[2] * shape[3]])
    hidden_3 = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases)
    return tf.matmul(hidden_3, layer4_weights) + layer4_biases

  # Training computation.

logits = model(tf_train_dataset)
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits,tf_train_labels))


  # Optimizer.

optimizer = tf.train.GradientDescentOptimizer(0.001).minimize(loss)

  # Predictions for the training, validation, and test data.

train_prediction = tf.nn.softmax(logits)
valid_prediction = tf.nn.softmax(model(tf_valid_dataset))
test_prediction = tf.nn.softmax(model(tf_test_dataset))

num_steps = 201

with tf.Session(graph=graph) as session:

    tf.initialize_all_variables().run()  
    print('Initialized')
    for step in range(num_steps):
      offset = (step * batch_size) % (train_labels.shape[0] - batch_size) 
      batch_data = train_dataset[offset:(offset + batch_size), :, :, :]
      batch_labels = train_labels[offset:(offset + batch_size), :]
      feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels}
      _, l, predictions = session.run(
        [optimizer, loss, train_prediction ], feed_dict=feed_dict)
      if (step % 50 == 0):
        print('Minibatch loss at step %d: %f' % (step, l))
        print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)
        print('Validation accuracy: %.1f%%' % accuracy(
          valid_prediction.eval(), valid_labels))
    print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels[:,0:9]))

【问题讨论】:

  • 更改测试数据不会影响训练好的网络,旧测试数据的准确率应该是稳定的。
  • 如何预测完全不在训练集中的类?
  • 是的,我知道如果我删除未经训练的图像,它会给我很高的准确性,但我的项目是创建新的类,如果在训练的数据集中不可用

标签: python-2.7 machine-learning tensorflow deep-learning conv-neural-network


【解决方案1】:

不可能在一定数量的类上训练具有交叉熵的模型(为您提供 10 个身份),并用不同的类对其进行测试(例如,10 个训练身份和 10 个新身份,总共 20 个) .

无论如何,您都需要摆脱最后一个 softmax 层(大小为 [num_hidden, 10])以使用一个新的 未训练 大小为 [num_hidden, 20] 的 softmax 层。

问题是这个新层将被随机初始化并且会产生非常糟糕的结果。


在深度学习中处理未知类的一般解决方案是将每个输入数据(人脸)构造成一个特征空间(大小为num_hidden)的非常好的表示。这种技术称为representation learning

假设您有一个出色的特征空间,您的模型可以在其中发送人脸。理论上,一个身份的所有面孔都将被发送到一个干净的集群中的同一位置。然后,您将能够运行 k-means 以获取身份集群或基于该嵌入的任何算法,k 是测试身份的数量 (k=20)。


有多种方法可以获得良好的嵌入。你可以得到你的 softmax 之前的最后一个隐藏层,甚至是已经训练好的模型的最后一个隐藏层(VGGFace 有很好的结果并且可以免费获得)。

VGGFace 论文中还提出了另一个有趣的想法,即使用 triplet loss 来微调嵌入。

【讨论】:

  • 谢谢@Olivier Moindrot,也许你是对的,我看过链接 [VGGFace] 但 matlab 中的内容文件我不熟悉,我可以使用 VGG-Face CNN 描述符吗使用张量流?
最近更新 更多