【发布时间】:2026-01-20 15:55:01
【问题描述】:
我想建立预测技术,指数平滑法是我的选择之一。但是,我在表示 ggplot 和计算结果/报告时遇到了一些问题。
最初,我正在生成随机数据集,以便用于这种技术,其中要预测的 alpha 和周期数由用户确定。例如;我有 100 天,接下来的 4 天愿意用他们的线条来估计 - 适合,上下 -。然后我想以表格的形式学习这些数据的值。
当我尝试可视化绘图时,错误是:ggplot2 不知道如何处理类 mtstsmatrix 的数据
require(shiny)
require(ggplot2)
require(forecast)
require(TTR)
shinyServer(function(input, output, session){
set.seed(123)
output$es1 <- renderPlot({
tmp <- data.frame(time = 1:100, sales = round(runif(100, 150, 879)) )
tmp.mean <- HoltWinters(x=tmp$sales, alpha = input$alpha, beta = FALSE,gamma=FALSE)
tmp.pred <- predict(tmp.mean,n.ahead = input$h, prediction.interval = TRUE)
y <- ggplot(tmp, aes(time, sales)) +
geom_line() +
geom_line(data=tmp.pred, aes(y=tmp.pred[,1]),color="red") +
geom_line(data=tmp.pred, aes(y=tmp.pred[,2]),color="blue") +
xlab("Days") +
ylab("Sales Quantity")+
ggtitle(title)
y })
output$infoes <- renderDataTable({
tmp <- data.frame(time = 1:100, sales = round(runif(100, 150, 879)) )
tmp.mean <- HoltWinters(x=tmp$sales, alpha = input$alpha, beta = FALSE,gamma=FALSE)
tmp.pred <- predict(tmp.mean,n.ahead = input$h, prediction.interval = TRUE)
tmp.pred
})
ui
require(shiny)
require(ggplot2)
require(forecast)
require(TTR)
shinyUI(pageWithSidebar(
headerPanel("Forecasting Methods"),
sidebarPanel(
h3(strong("Exponential Smoothing",style = "color:black")),
br(),
sliderInput("h","Number of periods for forecasting:",
min = 1, max = 20, step= 1, value = 4),
sliderInput("alpha","Alpha (Smoothing Parameter):",
min = 0.05, max = 1, step= 0.05, value = 0.01)
),
mainPanel(
tabsetPanel( id="tabs",
tabPanel("Exponential Smoothing",
value="panel",
plotOutput(outputId = "es1",
width = "900px",height = "400px"),
dataTableOutput(outputId="infoes"))
))))
【问题讨论】:
-
您需要指定要修复的问题。如果可以,请发布屏幕截图。此外,如果您正在生成随机数据,则应在测试期间指定种子,以便始终获得相同的数据。
-
我将编辑我的帖子以明确。
-
tmp.pred 可能不是数据框,所以这就是为什么你会得到“错误是:ggplot2 不知道如何处理 mtstsmatrix 类的数据”
标签: r ggplot2 shiny forecasting smoothing