【问题标题】:Predict movie reviews with scikit-learn使用 scikit-learn 预测电影评论
【发布时间】:2025-12-12 12:15:02
【问题描述】:

我正在使用 scikit-learn MultinomialNB 和 Vectorizer 来构建评论好坏的预测模型。

在对标记数据进行训练后,我如何使用它来预测新评论(或现有评论)?我收到以下错误消息。

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.cross_validation import train_test_split
from sklearn.naive_bayes import MultinomialNB

X = vectorizer.fit_transform(df.quote)
X = X.tocsc()
Y = (df.fresh == 'fresh').values.astype(np.int)

xtrain, xtest, ytrain, ytest = train_test_split(X, Y)

clf = MultinomialNB().fit(xtrain, ytrain)

new_review = ['this is a new review, movie was awesome']
new_review = vectorizer.fit_transform(new_review)

print df.quote[15]
print(clf.predict(df.quote[10])) #predict existing review in dataframe
print(clf.predict(new_review)) #predict new review


Technically, Toy Story is nearly flawless.
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-91-27a0698bbd1f> in <module>()
     15 
     16 print df.quote[15]
---> 17 print(clf.predict(df.quote[10])) #predict existing quote in dataframe
     18 print(clf.predict(new_review)) #predict new review

//anaconda/lib/python2.7/site-packages/sklearn/naive_bayes.pyc in predict(self, X)
     60             Predicted target values for X
     61         """
---> 62         jll = self._joint_log_likelihood(X)
     63         return self.classes_[np.argmax(jll, axis=1)]
     64 

//anaconda/lib/python2.7/site-packages/sklearn/naive_bayes.pyc in _joint_log_likelihood(self, X)
    439         """Calculate the posterior log probability of the samples X"""
    440         X = atleast2d_or_csr(X)
--> 441         return (safe_sparse_dot(X, self.feature_log_prob_.T)
    442                 + self.class_log_prior_)
    443 

//anaconda/lib/python2.7/site-packages/sklearn/utils/extmath.pyc in safe_sparse_dot(a, b, dense_output)
    178         return ret
    179     else:
--> 180         return fast_dot(a, b)
    181 
    182 

TypeError: Cannot cast array data from dtype('float64') to dtype('S32') according to the rule 'safe'

【问题讨论】:

  • 仅供参考,这称为情绪分析。而且您的问题与您的错误无关。
  • 谢谢,是的,这叫做情绪分析。我正在尝试使用 clf.predict() 预测新评论。可能错过了什么,让我知道,我可以澄清一下。 @keyser

标签: python machine-learning scikit-learn


【解决方案1】:

您需要将 Bag of Words 表示形式传递给 predict 而不是直接传递文本。您使用new_review 几乎正确地执行了此操作,只需更改new_review = vectorizer.transform(new_review),(请参阅@Stergios 评论)。试试这个:

print(clf.predict(X[10, :]))

【讨论】:

  • 太棒了,谢谢!代码 clf.predict(new_review) 不起作用,它给我一个错误“ValueError:尺寸不匹配”。任何想法? @elyase
  • 请将 new_review = vectorizer.fit_transform(new_review) 更改为 new_review = vectorizer.transform(new_review)。该模型应仅适用于训练数据。