【发布时间】:2026-02-12 16:45:02
【问题描述】:
请考虑以下几点:
自定义函数CustomFun 接受多个数字参数。参数名称存储在resp 中,与函数参数名称相对应。参数值存储在 val 列中。
data.frame 包含多个患者 (id) 的信息,因此数据需要按 id 分组。
问题:
我们如何将自定义函数应用于分组 data.frame 或 data.table,从同一数据结构中的列中获取参数?
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(data.table)
#>
#> Attaching package: 'data.table'
#> The following objects are masked from 'package:dplyr':
#>
#> between, first, last
# The data
df.x <- data.frame(id = rep(c(1:2), each = 5),
resp = c("val.a", "val.b", "val.c", "val.d", "val.e"),
val = c(10, 15, NA, NA, NA,
1, 5, NA, NA, NA))
df.x
#> id resp val
#> 1 1 val.a 10
#> 2 1 val.b 15
#> 3 1 val.c NA
#> 4 1 val.d NA
#> 5 1 val.e NA
#> 6 2 val.a 1
#> 7 2 val.b 5
#> 8 2 val.c NA
#> 9 2 val.d NA
#> 10 2 val.e NA
# A simple function (minimal replicable example)
CustomFun <- function(a,b){
a+b
}
期望的输出:
# Desired output
df.x %>% mutate(res = c(25, 25, NA, NA, NA, 6, 6, NA, NA, NA))
#> id resp val res
#> 1 1 val.a 10 25
#> 2 1 val.b 15 25
#> 3 1 val.c NA NA
#> 4 1 val.d NA NA
#> 5 1 val.e NA NA
#> 6 2 val.a 1 6
#> 7 2 val.b 5 6
#> 8 2 val.c NA NA
#> 9 2 val.d NA NA
#> 10 2 val.e NA NA
自己的方法:
这种方法在没有组时有效 (id)。对于所有非val.a 或val.b,在val 中没有NA 不会有问题,因为它们可以在第二步中被过滤掉。
# Approach without the need of grouping: one id only, problem: NA also assigned to val in df.z[3:5, ]
# dplyr
df.z <- df.x %>% slice(1:5)
df.z
#> id resp val
#> 1 1 val.a 10
#> 2 1 val.b 15
#> 3 1 val.c NA
#> 4 1 val.d NA
#> 5 1 val.e NA
df.z %>% mutate(test = CustomFun(a = df.z %>% filter(resp == "val.a") %>% pull(val),
b = df.z %>% filter(resp == "val.b") %>% pull(val))
)
#> id resp val test
#> 1 1 val.a 10 25
#> 2 1 val.b 15 25
#> 3 1 val.c NA 25
#> 4 1 val.d NA 25
#> 5 1 val.e NA 25
# data.table
setDT(df.z)[, .(test= CustomFun(a = setDT(df.z)[resp == "val.a", val],
b = setDT(df.z)[resp == "val.b", val])),
by = .(id, val, resp)]
#> id val resp test
#> 1: 1 10 val.a 25
#> 2: 1 15 val.b 25
#> 3: 1 NA val.c 25
#> 4: 1 NA val.d 25
#> 5: 1 NA val.e 25
# NOT working for groups =====================================
# data.frame
df.x %>%
group_by(id) %>%
mutate(test = CustomFun(a = df.x %>% filter(resp == "val.a") %>% pull(val),
b = df.x %>% filter(resp == "val.b") %>% pull(val))
)
#> Error in mutate_impl(.data, dots): Column `test` must be length 5 (the group size) or one, not 2
# data.table
setDT(df.x)[, .(test= CustomFun(a = setDT(df.x)[resp == "val.a", val],
b = setDT(df.x)[resp == "val.b", val])),
by = .(id, val, resp)]
#> id val resp test
#> 1: 1 10 val.a 25
#> 2: 1 10 val.a 6
#> 3: 1 15 val.b 25
#> 4: 1 15 val.b 6
#> 5: 1 NA val.c 25
#> 6: 1 NA val.c 6
#> 7: 1 NA val.d 25
#> 8: 1 NA val.d 6
#> 9: 1 NA val.e 25
#> 10: 1 NA val.e 6
#> 11: 2 1 val.a 25
#> 12: 2 1 val.a 6
#> 13: 2 5 val.b 25
#> 14: 2 5 val.b 6
#> 15: 2 NA val.c 25
#> 16: 2 NA val.c 6
#> 17: 2 NA val.d 25
#> 18: 2 NA val.d 6
#> 19: 2 NA val.e 25
#> 20: 2 NA val.e 6
由reprex package (v0.2.1) 于 2018 年 11 月 13 日创建
非常感谢!
【问题讨论】:
标签: r dplyr data.table