【发布时间】:2018-02-27 11:46:03
【问题描述】:
我有一个简单的代码,它读取 csv 文件,根据前 2 列查找重复项,然后将重复项写入另一个 csv 并在第三个 csv 中保留唯一值...
我正在使用集合:
def my_func():
area = "W09"
inf = r'f:\JDo\Cleaned\_merged\\'+ area +'.csv'
out = r'f:\JDo\Cleaned\_merged\no_duplicates\\'+area+'_no_duplicates.csv'
out2 = r'f:\JDo\Cleaned\_merged\duplicates\\'+area+"_duplicates.csv"
#i = 0
seen = set()
with open(inf, 'r') as infile, open(out, 'w') as outfile1, open(out2, 'w') as outfile2:
reader = csv.reader(infile, delimiter=" ")
writer1 = csv.writer(outfile1, delimiter=" ")
writer2 = csv.writer(outfile2, delimiter=" ")
for row in reader:
x, y = row[0], row[1]
x = float(x)
y = float(y)
if (x, y) in seen:
writer2.writerow(row)
continue
seen.add((x, y))
writer1.writerow(row)
seen.clear()
我想,那个集合是最好的选择,但是集合的大小是输入文件大小的七倍? (输入文件范围从 140 MB 到 50GB csv)和 RAM 使用量从 1GB 到近 400 GB(我使用的是具有 768 GB RAM 的服务器):
我还在小样本上使用了分析器
Line # Mem usage Increment Line Contents
8 21.289 MiB 21.289 MiB @profile
9 def my_func():
10 21.293 MiB 0.004 MiB area = "W10"
11
12 21.293 MiB 0.000 MiB inf = r'f:\JDo\Cleaned\_merged\\'+ area +'.csv'
13 21.293 MiB 0.000 MiB out = r'f:\JDo\Cleaned\_merged\no_duplicates\\'+area+'_no_duplicates.csv'
14 21.297 MiB 0.004 MiB out2 = r'f:\JDo\Cleaned\_merged\duplicates\\'+area+"_duplicates.csv"
15
16
17
18 #i = 0
19 21.297 MiB 0.000 MiB seen = set()
20
21 21.297 MiB 0.000 MiB with open(inf, 'r') as infile, open(out,'w') as outfile1, open(out2, 'w') as outfile2:
22 21.297 MiB 0.000 MiB reader = csv.reader(infile, delimiter=" ")
23 21.297 MiB 0.000 MiB writer1 = csv.writer(outfile1, delimiter=" ")
24 21.297 MiB 0.000 MiB writer2 = csv.writer(outfile2, delimiter=" ")
25 1089.914 MiB -9.008 MiB for row in reader:
26 1089.914 MiB -7.977 MiB x, y = row[0], row[1]
27
28 1089.914 MiB -6.898 MiB x = float(x)
29 1089.914 MiB 167.375 MiB y = float(y)
30
31 1089.914 MiB 166.086 MiB if (x, y) in seen:
32 #z = line.split(" ",3)[-1]
33 #if z == "5284":
34 # print X, Y, z
35
36 1089.914 MiB 0.004 MiB writer2.writerow(row)
37 1089.914 MiB 0.000 MiB continue
38 1089.914 MiB 714.102 MiB seen.add((x, y))
39 1089.914 MiB -9.301 MiB writer1.writerow(row)
40
41
42
43 690.426 MiB -399.488 MiB seen.clear()
可能是什么问题?有没有更快的方法来过滤掉结果? 还是一种使用较少方式 RAM 的方式?
csv 样本: 我们正在查看将 GeoTIFF 转换为 csv 文件,所以它是 X Y 值
475596 101832 4926
475626 101832 4926
475656 101832 4926
475686 101832 4926
475716 101832 4926
475536 101802 4926
475566 101802 4926
475596 101802 4926
475626 101802 4926
475656 101802 4926
475686 101802 4926
475716 101802 4926
475746 101802 4926
475776 101802 4926
475506 101772 4926
475536 101772 4926
475566 101772 4926
475596 101772 4926
475626 101772 4926
475656 101772 4926
475686 101772 4926
475716 101772 4926
475746 101772 4926
475776 101772 4926
475806 101772 4926
475836 101772 4926
475476 101742 4926
475506 101742 4926
编辑: 所以我尝试了Jean提供的解决方案: https://*.com/a/49008391/9418396
结果是,在我的 140 MB csv 小集上,集的大小现在减半,这是一个很好的改进。我将尝试在更大的数据上运行它,看看它做了什么。我无法真正将其链接到分析器,因为分析器会大量延长执行时间。
Line # Mem usage Increment Line Contents
8 21.273 MiB 21.273 MiB @profile
9 def my_func():
10 21.277 MiB 0.004 MiB area = "W10"
11
12 21.277 MiB 0.000 MiB inf = r'f:\JDo\Cleaned\_merged\\'+ area +'.csv'
13 21.277 MiB 0.000 MiB out = r'f:\JDo\Cleaned\_merged\no_duplicates\\'+area+'_no_duplicates.csv'
14 21.277 MiB 0.000 MiB out2 = r'f:\JDo\Cleaned\_merged\duplicates\\'+area+"_duplicates.csv"
15
16
17 21.277 MiB 0.000 MiB seen = set()
18
19 21.277 MiB 0.000 MiB with open(inf, 'r') as infile, open(out,'w') as outfile1, open(out2, 'w') as outfile2:
20 21.277 MiB 0.000 MiB reader = csv.reader(infile, delimiter=" ")
21 21.277 MiB 0.000 MiB writer1 = csv.writer(outfile1, delimiter=" ")
22 21.277 MiB 0.000 MiB writer2 = csv.writer(outfile2, delimiter=" ")
23 451.078 MiB -140.355 MiB for row in reader:
24 451.078 MiB -140.613 MiB hash = float(row[0])*10**7 + float(row[1])
25 #x, y = row[0], row[1]
26
27 #x = float(x)
28 #y = float(y)
29
30 #if (x, y) in seen:
31 451.078 MiB 32.242 MiB if hash in seen:
32 451.078 MiB 0.000 MiB writer2.writerow(row)
33 451.078 MiB 0.000 MiB continue
34 451.078 MiB 78.500 MiB seen.add((hash))
35 451.078 MiB -178.168 MiB writer1.writerow(row)
36
37 195.074 MiB -256.004 MiB seen.clear()
【问题讨论】:
-
为什么要将前两列转换为
float?int他们会更好吗? -
因为有些文件有十进制坐标,比如说2345641.5
-
您可以通过将 seen.add((x, y)) 放入 else 语句来节省大量时间。仅当该值不存在时才应将其添加到设置中。向集合添加值是一项昂贵的操作。
-
@gautamaggarwal
seen.add实际上在else中,因为continue。另外这里的问题不是时间,而是记忆。
标签: python python-2.7 csv memory set