【问题标题】:Interpolate in 2D with data from a data frame using dplyr in R使用 R 中的 dplyr 使用来自数据帧的数据进行 2D 插值
【发布时间】:2025-12-31 05:10:16
【问题描述】:

我有两个数据框:ReferenceInterpolated。这是参考的一瞥():

$ Value    (dbl) 62049.67, 62040.96, 62053.02, 62039.31, 62020.82, 62001.73,...
$ X       (dbl) -10.14236, -10.14236, -10.14236, -10.14236, -10.14236, -10....
$ Y       (dbl) -12.68236, -12.64708, -12.61181, -12.57653, -12.54125, -12....

这是插值

$ X       (dbl) -10.1346, -10.0838, -10.0330, -9.9822, -9.9314, -9.8806, -9...
$ Y       (dbl) -12.6746, -12.6746, -12.6746, -12.6746, -12.6746, -12.6746,...

我想使用 Reference 的 2D 插值在 Interpolated 中获取变量 Value

我正在考虑使用 akima 包中的 bicubic() 函数,例如 bicubic(Reference$X, Reference$Y, Reference$Value, Interpolated$X, Interpolated$Y)。然而 bicubic() 需要一个矩阵在 Reference$Value 中。

是否有任何简单的方法可以使用来自数据帧的数据进行二维插值,最好使用 dplyr

【问题讨论】:

    标签: r interpolation dplyr


    【解决方案1】:

    不知道你是否收到过这个问题的答案。我一直在寻找同样的东西,并且必须创建自己的函数来做到这一点。请看下面:

    interpolate <- function(x, x1, x2, y1, y2) {
      # Interpolates between two points.
      #
      # Args:
      #   x: Corresponding x value of y value to return.
      #   x1: Low x-value.
      #   x2: High x-value.
      #   y1: Low y-value.
      #   y2: High y-value.
      #
      # Returns:
      #   Interpolated value corresponding to x between the two points.
      y <- y1 + (y2-y1)*(x-x1)/(x2-x1)
      return(y)
    }
    
    doubleinterpolate <- function(x, y, z, xout, yout) {
      # Returns a double interpolated value among three vectors with two
      # values in two of the vectors.
      #
      # Args:
      #   x: Vector containing a known value.
      #   y: Vector containing a known value.
      #   z: Vector containing an unknown value.
      #   xout: Known value in x-vector.
      #   yout: Known value in y-vector.
      #
      # Returns:
      #   Double interpolated value in z of the points xout and yout.
    
      # Determine adjacent values in the table
      x_low <- max(x[x < xout])
      x_high <- min(x[x > xout])
      y_low <- max(y[y < yout])
      y_high <- min(y[y > yout])
    
      # Create df and subset
      df <- data_frame(x = x, y = y, z = z)
      df_low <- df[x == x_low, ]
      df_high <- df[x == x_high, ]
    
      # Interpolate low x-values
      yint1 <- as.numeric(spline(df_low$y, df_low$z, xout = yout)[2])
      yint2 <- as.numeric(spline(df_high$y, df_high$z, xout = yout)[2])
    
      #Interpolate to get last value
      zout <- interpolate(xout, x_low, x_high, yint1, yint2)
    
      return(zout)
    }
    

    【讨论】: