您可以为行和列创建一个列表,然后简单地迭代您的矩阵一次,同时将正确的部分相加:
创建演示数据:
import random
random.seed(42)
matrix = []
for n in range(10):
matrix.append(random.choices([0,1],k=10))
print(*matrix,sep="\n")
输出:
[1, 0, 0, 0, 1, 1, 1, 0, 0, 0]
[0, 1, 0, 0, 1, 1, 0, 1, 1, 0]
[1, 1, 0, 0, 1, 0, 0, 0, 1, 1]
[1, 1, 1, 1, 0, 1, 1, 1, 1, 1]
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0]
[0, 0, 0, 1, 1, 1, 0, 1, 0, 0]
[1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
[0, 1, 1, 0, 1, 0, 1, 0, 0, 0]
[1, 0, 1, 1, 0, 0, 1, 1, 0, 0]
[0, 1, 1, 0, 0, 0, 1, 1, 1, 1]
数数:
rows = [] # empty list for rows - you can simply sum over each row
cols = [0]*len(matrix[0]) # list of 0 that you can increment while iterating your matrix
for row in matrix:
for c,col in enumerate(row): # enumerate gives you the (index,value) tuple
rows.append( sum(x for x in row) ) # simply sum over row
cols[c] += col # adds either 0 or 1 to the col-index
print("rows:",rows)
print("cols:",cols)
输出:
rows: [4, 5, 5, 9, 2, 4, 6, 4, 5, 6] # row 0 == 4, row 1 == 5, ...
cols: [6, 6, 5, 4, 6, 5, 5, 5, 5, 3] # same for cols
代码更少,但使用 zip() 对矩阵进行 2 次完整传递以转置数据:
rows = [sum(r) for r in matrix]
cols = [sum(c) for c in zip(*matrix)]
print("rows:",rows)
print("cols:",cols)
输出:(相同)
rows: [4, 5, 5, 9, 2, 4, 6, 4, 5, 6]
cols: [6, 6, 5, 4, 6, 5, 5, 5, 5, 3]
您将不得不计时,但两次完整迭代和压缩的开销可能仍然值得,因为 zip() 方式在继承上比在列表上循环更优化。权衡可能只值得/最多/从某些矩阵大小......