【发布时间】:2021-06-21 23:04:24
【问题描述】:
在参考this link 之后,我能够使用XGBoost 成功实现增量学习。我想构建一个分类器并且需要检查预测概率,即predict_proba() 方法。如果我使用XGBoost,这是不可能的。在实现XGBClassifier.fit() 而不是XGBoost.train() 时,我无法执行增量学习。 XGBClassifier.fit() 的 xgb_model 参数采用 XGBoost,而我想提供 XGBClassifier。
由于我需要使用predict_proba()方法,是否可以对XGBClassifier进行增量学习?
工作代码:
import XGBoost as xgb
train_data = xgb.DMatrix(X, y)
model = xgb.train(
params = best_params,
dtrain = train_data,
)
new_train_data = xgb.DMatrix(X_new, y_new)
retrained_model = xgb.train(
params = best_params,
dtrain = new_train_data,
xgb_model = model
)
以上代码运行完美,但没有retrained_model.predict_proba()选项
非工作代码:
import XGBoost as xgb
xgb_model = xgb.XGBClassifier(**best_params)
xgb_model.fit(X, y)
retrained_model = xgb.XGBClassifier(**best_params)
retrained_model.fit(X_new, y_new, xgb_model = xgb_model)
上述代码不起作用,因为它需要加载 XGBoost 模型或 Booster instance XGBoost 模型。
错误追踪:
[11:27:51] WARNING: ../src/learner.cc:1061: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior.
Traceback (most recent call last):
File "/project/Data_Training.py", line 530, in train
retrained_model.fit(X_new, y_new, xgb_model = xgb_model)
File "/home/user/.local/lib/python3.6/site-packages/xgboost/core.py", line 422, in inner_f
return f(**kwargs)
File "/home/user/.local/lib/python3.6/site-packages/xgboost/sklearn.py", line 915, in fit
callbacks=callbacks)
File "/home/user/.local/lib/python3.6/site-packages/xgboost/training.py", line 236, in train
early_stopping_rounds=early_stopping_rounds)
File "/home/user/.local/lib/python3.6/site-packages/xgboost/training.py", line 60, in _train_internal
model_file=xgb_model)
File "/home/user/.local/lib/python3.6/site-packages/xgboost/core.py", line 1044, in __init__
raise TypeError('Unknown type:', model_file)
TypeError: ('Unknown type:', XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
colsample_bynode=1, colsample_bytree=1, gamma=0, gpu_id=-1,
importance_type='gain', interaction_constraints='',
learning_rate=1, max_delta_step=0, max_depth=3,
min_child_weight=1, missing=nan, monotone_constraints='()',
n_estimators=100, n_jobs=32, num_parallel_tree=1, random_state=0,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=0.7,
tree_method='exact', validate_parameters=1, verbosity=None))
【问题讨论】:
-
错误信息中的
'Unknown type:', model_file是什么意思?xgb_model是否已经在工作空间中,或者您从此处未显示的代码中的文件中加载它?如果是这样,请在此处发布所有相关代码 - 查看如何创建minimal reproducible example。 -
@desertnaut
xgb_model是使用XGBClassifier的初始训练模型。然后xgb_model也是XGBClassifier的参数。道歉。我应该为初始训练模型使用不同的名称。据我了解,错误是我刚才在error trace上面提到的那一行。如果我错了,请纠正我。
标签: python machine-learning xgboost