【发布时间】:2026-02-11 07:30:01
【问题描述】:
我正在尝试通过迭代唯一值(合同编号)来添加从一个数据框列中获取的值。对于较少的迭代次数,该脚本可以完美运行。但是,迭代超过 1000 个唯一值,它会在结果数据帧中创建重复值,这反过来会减慢处理速度并花费不必要的长时间进行处理。 我应该如何提高效率?
https://imgur.com/3obXPne - 原始数据框
https://imgur.com/mEA8g6Z - 新数据帧中不必要的重复数据帧
https://imgur.com/3i5gMoJ- 新数据帧中不必要的重复数据帧
import pandas as pd
import numpy as np
from datetime import datetime
df = pd.DataFrame([["AB1111",'2018-08-15 00:00:00','164','123','123'],
["AB1111",'2018-08-15 00:03:00','564','453','126'],
["AB1111",'2018-08-15 00:10:00','364','1231','1223'],
["AB1111",'2018-08-15 00:01:00','564','575','1523'],
["CD1111",'2018-08-16 00:12:00','514','341','1213'],
["CD1111",'2018-08-15 00:02:00','564','1234','123'],
["CD1111",'2018-08-16 00:05:00','564','341','124'],
["CD1111",'2018-08-16 00:03:00','64','341','123'],
["EF1111",'2018-08-15 00:00:00','534','341','121'],
["EF1111",'2018-08-17 00:01:00','564','341','163'],
["EF1111",'2018-08-15 00:09:00','524','341','129']],
columns = ['contract', 'datetime',
'real_cons','solar_gen','battery_charge'])
# converting datetime column datatype to "datetime"
df['datetime'] = pd.to_datetime(df['datetime'])
#aggregation dataframe (new dataframe)
df_agg1 = pd.DataFrame()
for contract in df['contract'].unique()[:1500]:
print(contract)
df_contract = df.copy()[df['contract']==contract] # selecting each full dataframe from the main DF
df_contract.set_index('datetime', inplace=True) # set "datetime" column as an index
df_contract.sort_index(inplace=True) # sort index
df_contract = df_contract.loc['2018-8-15'] # select timeframe
# creating GB61074_cons column, which will be added to df_agg, from df_contract 'real_cons' column
df_contract[f'{contract}_con'] = df_contract['real_cons']
if df_agg1.empty:
df_agg1 = df_contract[[f'{contract}_con']] # first column
else:
df_agg1 = df_agg1.join(df_contract[f'{contract}_con']) # subsequent columns
df_agg1
如何在不创建这些不必要的重复项的情况下创建新的数据框? 是什么导致它们被创建?
【问题讨论】:
-
能否举出合适的例子,可以直接使用?
-
我看不到任何重复项!你能具体说明一下重复是什么意思吗?
-
@mgruber,嗨,如果您参考第二张和第三张图片,您将看到在新数据框中创建的重复项。
-
@AmarboldAltangerel 我的回答(见下文)对您有帮助吗?
标签: python pandas loops dataframe iteration