【发布时间】:2025-03-01 03:50:02
【问题描述】:
我正在尝试构建一个 LSTM 编码器解码器,我的主要目标是解码器的初始状态与编码器相同。我从here 找到了下面的代码,并试图将其附加到我的案例中。我有一个形状为 (1000,20,1) 的数据。我希望编码器解码器在输出中将我的输入返回给我。即使我理解错误,我也不知道如何更正它正在工作的代码。当我尝试运行它时,我收到以下错误:
The model expects 2 input arrays, but only received one array. Found:
array with shape (10000, 20, 1)
from keras.models import Model
from keras.layers import Input
from keras.layers import LSTM
from keras.layers import Dense
from keras.models import Sequential
latent_dim = 128
encoder_inputs = Input(shape=(20,1))
encoder = LSTM(latent_dim, return_state=True)
encoder_outputs, state_h, state_c = encoder(encoder_inputs)
# We discard `encoder_outputs` and only keep the states.
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(20, 1))
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, _, _ = decoder_lstm(decoder_inputs, initial_state=encoder_states)
decoder_dense = Dense(1, activation='tanh')
decoder_outputs = decoder_dense(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
model.compile(optimizer='adam', loss='mse', metrics=['acc', 'mae'])
history=model.fit(xtrain, xtrain, epochs=200, verbose=2, shuffle=False)
我也有这个模型,但我不确定如何在这里初始化与解码器状态相同的编码器状态。重复向量是这样做的吗?
#define model
model = Sequential()
model.add(LSTM(100, input_shape=(n_timesteps_in, n_features)))
model.add(RepeatVector(n_timesteps_in))
model.add(LSTM(100, return_sequences=True))
model.add(TimeDistributed(Dense(n_features, activation='tanh')))
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
history=model.fit(train, train, epochs=epochs, verbose=2, shuffle=False)
【问题讨论】:
标签: python keras lstm autoencoder