【发布时间】:2020-05-08 19:44:09
【问题描述】:
我的数据是DataFrame:
dOpen dHigh dLow dClose dVolume day_of_week_0 day_of_week_1 ... month_6 month_7 month_8 month_9 month_10 month_11 month_12
639 -0.002498 -0.000278 -0.005576 -0.002228 -0.002229 0 0 ... 0 0 1 0 0 0 0
640 -0.004174 -0.005275 -0.005607 -0.005583 -0.005584 0 0 ... 0 0 1 0 0 0 0
641 -0.002235 0.003070 0.004511 0.008984 0.008984 1 0 ... 0 0 1 0 0 0 0
642 0.006161 -0.000278 -0.000281 -0.001948 -0.001948 0 1 ... 0 0 1 0 0 0 0
643 -0.002505 0.001113 0.005053 0.002788 0.002788 0 0 ... 0 0 1 0 0 0 0
644 0.004185 0.000556 -0.000559 -0.001668 -0.001668 0 0 ... 0 0 1 0 0 0 0
645 0.002779 0.003056 0.003913 0.001114 0.001114 0 0 ... 0 0 1 0 0 0 0
646 0.000277 0.004155 -0.002227 -0.002782 -0.002782 1 0 ... 0 0 1 0 0 0 0
647 -0.005540 -0.007448 -0.003348 0.001953 0.001953 0 1 ... 0 0 1 0 0 0 0
648 0.001393 -0.000278 0.001960 -0.003619 -0.003619 0 0 ... 0 0 1 0 0 0 0
我的输入将是 10 行(已经一次性编码)。我想创建一个 n 维自动编码表示。所以据我了解,我的输入和输出应该是一样的。
我已经看到了一些构建这个的例子,但我仍然停留在第一步。我的训练数据是否只是用于制作矩阵的大量样本?然后呢?
对于这个问题的一般性质,我深表歉意。有任何问题,尽管问,我会在 cmets 中澄清。
谢谢。
【问题讨论】:
-
你能举一些你开始的例子吗?
标签: python pytorch lstm autoencoder