【发布时间】:2017-08-26 09:07:40
【问题描述】:
我对神经网络和 keras 有点陌生。我有一些大小为 6*7 的图像,过滤器的大小为 15。我想有几个过滤器并在每个过滤器上分别训练一个卷积层,然后将它们组合起来。我在这里看过一个例子:
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=input_shape))
model.add(Activation('relu'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=pool_size))
model.add(Dropout(0.25))
model.add(Flatten(input_shape=input_shape))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('tanh'))
此模型适用于一个过滤器。谁能给我一些关于如何修改模型以使用并行卷积层的提示。
谢谢
【问题讨论】:
标签: neural-network keras conv-neural-network keras-layer