【问题标题】:R : Calculating p-value using simulationsR:使用模拟计算 p 值
【发布时间】:2024-01-07 18:58:01
【问题描述】:

我编写这段代码是为了对两个随机分布的观察 x 和 y 运行测试统计

mean.test <- function(x, y, B=10000,
alternative=c("two.sided","less","greater"))
{
p.value <- 0
alternative <- match.arg(alternative)
s <- replicate(B, (mean(sample(c(x,y), B, replace=TRUE))-mean(sample(c(x,y), B, replace=TRUE))))
t <- mean(x) - mean(y) 
p.value <- 2*(1- pnorm(abs(quantile(T,0.01)), mean = 0, sd = 1, lower.tail = 
TRUE, log.p = FALSE))   #try to calculate p value 
data.name <- deparse(substitute(c(x,y)))
names(t) <- "difference in means"
zero <- 0
names(zero) <- "difference in means"
return(structure(list(statistic = t, p.value = p.value,
method = "mean test", data.name = data.name,
observed = c(x,y), alternative = alternative,
null.value = zero),
class = "htest"))
}

代码使用蒙特卡洛模拟来生成测试统计均值(x)-均值(y)的分布函数,然后计算 p 值,但显然我错过了定义这个 p 值,因为:

> set.seed(0)
> mean.test(rnorm(1000,3,2),rnorm(2000,4,3)) 

输出应如下所示:

    mean test
data: c(rnorm(1000, 3, 2), rnorm(2000, 4, 3))
difference in means = -1.0967, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0

但我得到了这个:

      mean test
data:  c(rnorm(1000, 3, 2), rnorm(2000, 4, 3))
difference in means = -1.0967, p-value = 0.8087
alternative hypothesis: true difference in means is not equal to 0

有人可以向我解释一下这个错误吗?

【问题讨论】:

  • 您在代码中不使用s 似乎很奇怪。

标签: r statistics simulation montecarlo p-value


【解决方案1】:

据我所知,您的代码中有很多错误和错误:

  • quantile(T, 0.01) - 这里是 T == TRUE,所以你正在计算 1 的分位数。
  • 从未使用对象s
  • mean(sample(c(x,y), B, replace=TRUE))你想在这里做什么? c() 函数结合了 xy。抽样毫无意义,因为您不知道他们来自什么人群
  • 当您计算检验统计量t 时,它应该取决于方差(和样本量)。

【讨论】: