深度学习

深度学习Pytorch(一)

深度学习Pytorch(一) 前言:必须使用英伟达显卡才能使用cuda(显卡加速)! 移除环境: conda remove -n pytorch --all 一、安装Pytorch 下载Anaconda 打开Anaconda Prompt 创建一个Pytorch环境: conda create -n ... »

wisteria

AI 大战 AI,一个深度强化学习多智能体竞赛系统

小伙伴们快看过来!这是一款全新打造的 ⚔️ AI vs. AI ⚔️——深度强化学习多智能体竞赛系统。 这个工具托管在 Space 上,允许我们创建多智能体竞赛。它包含三个元素: 一个带匹配算法的 Space,使用后台任务运行模型战斗。 一个包含结果的 Dataset。 一个获取匹配历史结果和显示模 ... »

huggingface

代码优化与程序加速指南——针对数值优化和深度学习领域

背景 当需要处理规模较大、任务较复杂的优化问题或训练神经网络时,我们经常会遇到程序运行时间长或无法完成的情况。然而,这不一定是由于问题规模大或计算机硬件能力的限制。即使尝试使用更高性能的服务器或计算机,也不能保证能够有效地加速代码运行。因为高性能的硬件通常需要与为高性能计算而设计的代码相匹配。 本文 ... »

sashabanks

几种类型神经网络学习笔记

跟随【导师不教?我来教!】同济计算机博士半小时就教会了我五大深度神经网络,CNN/RNN/GAN/transformer/LSTM一次学会,简直不要太强!_哔哩哔哩_bilibili了解的五大神经网络,整理笔记如下: 视频是唐宇迪博士讲解的,但是这个up主发的有一种东拼西凑的感觉,给人感觉不是很完整 ... »

【论文笔记】UNet

语义分割的U-Net网络结构Unet是2015年诞生的模型,它几乎是当前segmentation项目中应用最广的模型。Unet能从更少的训练图像中进行学习,当它在少于40张图的生物医学数据集上训练时,IOU值仍能达到92%。Unet网络非常简单,前半部分作用是特征提取,后半部分是上采样。在一些文献中 ... »

深度学习基础-优化算法详解

所谓深度神经网络的优化算法,即用来更新神经网络参数,并使损失函数最小化的算法。优化算法对于深度学习非常重要,网络参数初始化决定模型是否收敛,而优化算法的性能则直接影响模型的训练效率。 ... »

深度学习-LSTM

前言 神经网络的历史和背景 神经网络是一种模拟人类神经系统的计算模型,它由大量简单的神经元单元组成,通过它们之间的连接和传递信息来模拟人脑的学习和推理过程。神经网络起源于上世纪40年代,当时Warren McCulloch和Walter Pitts提出了一种可模拟生物神经元的数学模型,这是第一个神经 ... »

alax-w

Diffusers库的初识及使用

diffusers库的目标是: 将扩散模型(diffusion models)集中到一个单一且长期维护的项目中 以公众可访问的方式复现高影响力的机器学习系统,如DALLE、Imagen等 让开发人员可以很容易地使用API进行模型训练或者使用现有模型进行推理 diffusers的核心分成三个组件: P ... »

深度学习-RNN

I.前言 介绍RNN的概念和应用 RNN(Recurrent Neural Network,循环神经网络)是一类能够处理序列数据的神经网络,它在处理时考虑了之前的状态,因此能够对序列数据中的每个元素进行建模和预测。 RNN的应用非常广泛,特别是在自然语言处理和时间序列分析方面。以下是RNN在各个领域 ... »

alax-w

基于深度学习的表格检测与识别技术的优势

引言: 信息时代的高速发展导致数据的大量产生与频繁传输,单单依靠人力很难处理这些数据。依托于人工智能的兴起与发展,数据的利用变得更加高效。表格作为数据的一种重要载体,是人们为了让数据的组织形式更加标准和结构化而使用的一种数据类型。 表格的特点: 信息高度精炼集中,方便信息的检索和比较。表格被广泛用于 ... »

intsig

图卷积神经网络分类的pytorch实现

  图神经网络(GNN)目前的主流实现方式就是节点之间的信息汇聚,也就是类似于卷积网络的邻域加权和,比如图卷积网络(GCN)、图注意力网络(GAT)等。下面根据GCN的实现原理使用Pytorch张量,和调用torch_geometric包,分别对Cora数据集进行节点分类实验。   Cora是关于科 »

Python绘制神经网络模型图

本文介绍基于Python语言,对神经网络模型的结构进行可视化绘图的方法~   本文介绍基于Python语言,对神经网络模型的结构进行可视化绘图的方法。   最近需要进行神经网络结构模型的可视化绘图工作。查阅多种方法后,看到很多方法都比较麻烦,例如单纯利用graphviz模块,就需要手动用 »

交叉熵损失CrossEntropyLoss

在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真实数据的相近程度。交叉熵越小,表示数据越接近真实样本。 1 分类任务的损失计算 1.1 单标签分类 二分类   单标签任务,顾名思义,每个样本只能有一个标签,比如ImageNet »

Python基于TensorFlow接口实现深度学习神经网络回归

目录 1 写在前面 2 代码分解介绍 2.1 准备工作 2.2 参数配置 2.3 原有模型删除 2.4 数据导入与数据划分 2.5 Feature Columns定义 2.6 模型优化方法构建与模型结构构建 2.7 模型训练 2.8 模型验证与测试 2.9 精度评定、拟合图像绘制与模型参数与精度 »

随机森林RF模型超参数的优化:Python实现

本文介绍基于Python的随机森林(Random Forest,RF)回归代码,以及模型超参数(包括决策树个数与最大深度、最小分离样本数、最小叶子节点样本数、最大分离特征数等)自动优化的代码~   本文介绍基于Python的随机森林(Random Forest,RF)回归代码,以及模型超 »

Python实现随机森林RF并对比自变量的重要性

本文介绍在Python环境中,实现随机森林(Random Forest,RF)回归与各自变量重要性分析与排序的过程。 其中,关于基于MATLAB实现同样过程的代码与实战,大家可以点击查看MATLAB实现随机森林(RF)回归与自变量影响程度分析这篇文章。 本文分为两部分,第一部分为代码的分段讲解,第二 ... »

神经网络基础部件-卷积层详解

本文深度讲解了卷积计算的原理,并详细介绍了构成所有卷积网络主干的基本元素,包括卷积层本身、填充(padding)和步幅 (stride)的基本细节、用于在相邻区域汇聚信息的汇聚层(pooling),最后给出卷积层和汇聚层的代码示例。 ... »