【发布时间】:2026-02-15 05:45:02
【问题描述】:
现在scipy.misc.comb 确实比 ad-hoc 实现更快,是否有结论?
根据一个旧答案Statistics: combinations in Python,在计算组合nCr时,这个自制函数比scipy.misc.comb快:
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in xrange(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return 0
但是在我自己的机器上运行了一些测试之后,情况似乎不是这样,使用这个脚本:
from scipy.misc import comb
import random, time
def choose(n, k):
"""
A fast way to calculate binomial coefficients by Andrew Dalke (contrib).
"""
if 0 <= k <= n:
ntok = 1
ktok = 1
for t in xrange(1, min(k, n - k) + 1):
ntok *= n
ktok *= t
n -= 1
return ntok // ktok
else:
return 0
def timing(f):
def wrap(*args):
time1 = time.time()
ret = f(*args)
time2 = time.time()
print '%s function took %0.3f ms' % (f.__name__, (time2-time1)*1000.0)
return ret
return wrap
@timing
def test_func(combination_func, nk):
for n,k in nk:
combination_func(n, k)
nk = []
for _ in range(1000):
n = int(random.random() * 10000)
k = random.randint(0,n)
nk.append((n,k))
test_func(comb, nk)
test_func(choose, nk)
我得到以下输出:
$ python test.py
/usr/lib/python2.7/dist-packages/scipy/misc/common.py:295: RuntimeWarning: overflow encountered in exp
vals = exp(lgam(N+1) - lgam(N-k+1) - lgam(k+1))
999
test_func function took 32.869 ms
999
test_func function took 1859.125 ms
$ python test.py
/usr/lib/python2.7/dist-packages/scipy/misc/common.py:295: RuntimeWarning: overflow encountered in exp
vals = exp(lgam(N+1) - lgam(N-k+1) - lgam(k+1))
999
test_func function took 32.265 ms
999
test_func function took 1878.550 ms
时间分析测试是否表明新的scipy.misc.comb 比专用的choose() 函数更快?我的测试脚本中是否有任何错误导致计时不准确? p>
为什么scipy.misc.comb 现在更快了?是因为一些cython / c 包装技巧?
已编辑
@WarrenWeckesser 评论后:
在使用scipy.misc.comb() 时使用默认的浮点近似,计算会因浮点溢出而中断。
(有关文档,请参阅 http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.misc.comb.html)
当使用exact=True 进行测试时,使用下面的函数使用长整数而不是浮点数进行计算,计算 1000 个组合时会慢很多:
@timing
def test_func(combination_func, nk):
for i, (n,k) in enumerate(nk):
combination_func(n, k, exact=True)
[出]:
$ python test.py
test_func function took 3312.211 ms
test_func function took 1764.523 ms
$ python test.py
test_func function took 3320.198 ms
test_func function took 1782.280 ms
【问题讨论】:
-
默认情况下,scipy 的
comb计算一个浮点值,当参数足够大时,这将是一个近似值。您应该使用comb中的参数exact=True比较时间。 -
哇,在使用
exact=True之后,速度超级慢。那么有什么理由不使用临时功能而不是scipy.misc.comb -
好问题!如果你觉得有动力,你可以添加任何与 github.com/scipy/scipy/issues/3449 相关的 cmets
标签: python math scipy combinations combinatorics