深度学习(十四)——优化器
反向传播可以求出神经网路中每个需要调节参数的梯度,优化器可以根据梯度进行调整,达到降低整体误差的作用。本节我们对优化器进行介绍。 ... »
反向传播可以求出神经网路中每个需要调节参数的梯度,优化器可以根据梯度进行调整,达到降低整体误差的作用。本节我们对优化器进行介绍。 ... »
本文介绍在Anaconda环境下,创建、使用与删除Python虚拟环境的方法。 在Python的使用过程中,我们常常由于不同Python版本以及不同第三方库版本的支持情况与相互之间的冲突情况,而需要创建不同的Python虚拟环境;在Anaconda的帮助下,这一步骤就变得十分方便。 首先,我们需要打 ... »
分类任务和回归任务的不同之处在于,分类任务需要做出离散的预测。对于多分类任务的神经网络模型,其输出目标通常会用**one-hot**编码来表示,在输出层中使用**softmax**函数,同时使用分类交叉熵损失函数进行训练。在本博客中,我们将使用**TensorFlow**的底层API实现一个基于全连 ... »
| 图存储部分 | | | | | | | | paddle/fluid/framework/fleet/heter_ps | graph_gpu_wrapper.h | GPU图主入口 | | | graph_gpu_ps_table.h | GPU图的主要存储结构,neighbor采样等都在这里 ... »
> 本文深入探讨了前馈神经网络(FNN)的核心原理、结构、训练方法和先进变体。通过Python和PyTorch的实战演示,揭示了FNN的多样化应用。 > 作者TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师, ... »
> 基于`torch.nn`搭建神经网络的基础教程大纲: ## **1. 引言** 在我们开始深入探讨`torch.nn`之前,我们首先需要理解PyTorch及其神经网络库的基础知识。这一部分的内容将帮助你对PyTorch有一个整体的了解。 ### 1.1 **为什么选择PyTorch?** - * ... »
>在本文中,我们深入探讨了循环神经网络(RNN)及其高级变体,包括长短时记忆网络(LSTM)、门控循环单元(GRU)和双向循环神经网络(Bi-RNN)。文章详细介绍了RNN的基本概念、工作原理和应用场景,同时提供了使用PyTorch构建、训练和评估RNN模型的完整代码指南。 > 作者 TechLea ... »
回复我们公众号“1号程序员”的“E005”可以获取原文下载地址。[关注并回复:【E005】] 摘要 前列腺癌是男性最常见的癌症,也是导致癌症死亡的主要原因。确定患者最佳治疗方案是一项挑战,肿瘤学家必须选择最有可能成功且最不可能出现毒性的治疗方案。国际预后标准依赖于非特异性和半定量工具,通常导致过度治 ... »
# 一、损失函数:Loss Function > 官网文档:[torch.nn — PyTorch 2.0 documentation](https://pytorch.org/docs/stable/nn.html#loss-functions) ## 1. Loss Function的作用 - ... »
# 一、torch.nn.Sequential代码栗子 > 官方文档:[Sequential — PyTorch 2.0 documentation](https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#sequent ... »
主要介绍神经网络线性层的计算,即torch.nn.Linear的原理及应用。并插入一些神经网络的其他层介绍,及调用pytorch中网络模型的方法。 ... »
> 本文为生成对抗网络GAN的研究者和实践者提供全面、深入和实用的指导。通过本文的理论解释和实际操作指南,读者能够掌握GAN的核心概念,理解其工作原理,学会设计和训练自己的GAN模型,并能够对结果进行有效的分析和评估。 > 作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管 ... »
> 本文全面探讨了卷积神经网络CNN,深入分析了背景和重要性、定义与层次介绍、训练与优化,详细分析了其卷积层、激活函数、池化层、归一化层,最后列出其训练与优化的多项关键技术:训练集准备与增强、损失函数、优化器、学习率调整、正则化技巧与模型评估调优。旨在为人工智能学者使用卷积神经网络CNN提供全面的指 ... »
[toc] # 背景 人脸识别已经发展了很多年,随着深度学习发展,开源的模型也有很不错的效果了。我们可以在不需要深入各种算法细节的情况下,就能搭建自己的人脸识别系统了,除了用于学习,还可以将我们自己家的摄像头接入到我们自己搭的系统,真正用起来。这个专栏就基于这样一个设想,从开源的模型中寻找适合的算法 ... »
> 本篇文章深入探讨了计算视觉的定义和主要任务。内容涵盖了图像分类与识别、物体检测与分割、人体分析、三维计算机视觉、视频理解与分析等技术,最后展示了无监督学习与自监督学习在计算机视觉中的应用。 > 作者 TechLead,拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦 ... »
# 总览 你是否好奇 GitHub Copilot 如何知道你想写的内容?有时候它聪明得甚至好像读过你项目里其他文件一样,不要怀疑,它确实读过。这篇文章记录了我阅读一个对 Copilot 的[逆向工程](https://thakkarparth007.github.io/copilot-explor ... »
> 本文全面探讨了Transformer及其衍生模型,深入分析了自注意力机制、编码器和解码器结构,并列举了其编码实现加深理解,最后列出基于Transformer的各类模型如BERT、GPT等。文章旨在深入解释Transformer的工作原理,并展示其在人工智能领域的广泛影响。 > 作者 TechLe ... »
# 一、Padding Layers简介 - **nn.ZeroPad2d**:在输入的tensor数据类型周围**用0进行填充** - **nn.ConstantPad2d**:在输入的tensor数据类型周围**用常数进行填充** 这个函数的主要作用是对输入的图像进行填充,但里面所有功能都能用n ... »
> 本文深入浅出地探讨了OpenCV库在图像处理和深度学习中的应用。从基本概念和操作,到复杂的图像变换和深度学习模型的使用,文章以详尽的代码和解释,带领大家步入OpenCV的实战世界。 # 1. OpenCV简介 ## 什么是OpenCV? ![file](https://img2023.cnblo ... »
# 一、 torch.nn中Pool layers的介绍 > 官网链接: > > https://pytorch.org/docs/stable/nn.html#pooling-layers ## 1. nn.MaxPool2d介绍 nn.MaxPool2d是在进行图像处理时,Pool layers ... »