zlslch

 

 

  不多说,直接上干货!

 

 

 

 

回归与梯度下降

  回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如本地加权回归、逻辑回归,等等。

  用一个很简单的例子来说明回归,这个例子来自很多的地方,也在很多的开源软件中看到,比如说weka。大概就是,做一个房屋价值的评估系统,一个房屋的价值来自很多地方,比如说面积、房间的数量(几室几厅)、地 段、朝向等等,这些影响房屋价值的变量被称为特征(feature),feature在机器学习中是一个很重要的概念,有很多的论文专门探讨这个东西。在 此处,为了简单,假设我们的房屋就是一个变量影响的,就是房屋的面积。

 

  假设有一个房屋销售的数据如下:

  面积(m^2)  销售价钱(万元)

  123            250

  150            320

  87              160

  102            220

  …               …

 

  这个表类似于帝都5环左右的房屋价钱,我们可以做出一个图,x轴是房屋的面积。y轴是房屋的售价,如下:

 

                      image   

  如果来了一个新的面积,假设在销售价钱的记录中没有的,我们怎么办呢?

 

  我们可以用一条曲线去尽量准的拟合这些数据,然后如果有新的输入过来,我们可以在将曲线上这个点对应的值返回。如果用一条直线去拟合,可能是下面的样子:

                     image

  绿色的点就是我们想要预测的点。

 

  首先给出一些概念和常用的符号,在不同的机器学习书籍中可能有一定的差别。

  房屋销售记录表 - 训练集(training set)或者训练数据(training data), 是我们流程中的输入数据,一般称为x

  房屋销售价钱 - 输出数据,一般称为y

  拟合的函数(或者称为假设或者模型),一般写做 y = h(x)

  训练数据的条目数(#training set), 一条训练数据是由一对输入数据和输出数据组成的

  输入数据的维度(特征的个数,#features),n

 

  下面是一个典型的机器学习的过程,首先给出一个输入数据,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计,也被称为构建一个模型。就如同上面的线性回归函数。

                     image

  

  我们用X1,X2..Xn 去描述feature里面的分量,比如x1=房间的面积,x2=房间的朝向,等等,我们可以做出一个估计函数:

                         image

 

  θ在这儿称为参数,在这儿的意思是调整feature中每个分量的影响力,就是到底是房屋的面积更重要还是房屋的地段更重要。为了如果我们令X0 = 1,就可以用向量的方式来表示了:

 

                           image

  我们程序也需要一个机制去评估我们θ是否比较好,所以说需要对我们做出的h函数进行评估,一般这个函数称为损失函数(loss function)或者错误函数(error function),描述h函数不好的程度,在下面,我们称这个函数为J函数

 

  在这儿我们可以做出下面的一个错误函数:

                        image

  这个错误估计函数是去对x(i)的估计值与真实值y(i)差的平方和作为错误估计函数,前面乘上的1/2是为了在求导的时候,这个系数就不见了。

  如何调整θ以使得J(θ)取得最小值有很多方法,其中有最小二乘法(min square),是一种完全是数学描述的方法,在stanford机器学习开放课最后的部分会推导最小二乘法的公式的来源,这个来很多的机器学习和数学书 上都可以找到,这里就不提最小二乘法,而谈谈梯度下降法。

 

 

 

 

梯度下降法是按下面的流程进行

  1)首先对θ赋值,这个值可以是随机的,也可以让θ是一个全零的向量。

  2)改变θ的值,使得J(θ)按梯度下降的方向进行减少。

 

  为了更清楚,给出下面的图:

                        image 

  这是一个表示参数θ与误差函数J(θ)的关系图,红色的部分是表示J(θ)有着比较高的取值,我们需要的是,能够让J(θ)的值尽量的低。也就是深蓝色的部分。θ0,θ1表示θ向量的两个维度。

  在上面提到梯度下降法的第一步是给θ给一个初值,假设随机给的初值是在图上的十字点。

  然后我们将θ按照梯度下降的方向进行调整,就会使得J(θ)往更低的方向进行变化,如图所示,算法的结束将是在θ下降到无法继续下降为止。

                     image 

 

  当然,可能梯度下降的最终点并非是全局最小点,可能是一个局部最小点,可能是下面的情况:

                     image

  上面这张图就是描述的一个局部最小点,这是我们重新选择了一个初始点得到的,看来我们这个算法将会在很大的程度上被初始点的选择影响而陷入局部最小点

 

   下面我将用一个例子描述一下梯度减少的过程,对于我们的函数J(θ)求偏导J:(求导的过程如果不明白,可以温习一下微积分)

                 image

 

  下面是更新的过程,也就是θi会向着梯度最小的方向进行减少。θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表示步长,也就是每次按照梯度减少的方向变化多少。

                 image 

  一个很重要的地方值得注意的是,梯度是有方向的,对于一个向量θ,每一维分量θi都可以求出一个梯度的方向,我们就可以找到一个整体的方向,在变化的时候,我们就朝着下降最多的方向进行变化就可以达到一个最小点,不管它是局部的还是全局的。

 

  用更简单的数学语言进行描述步骤2)是这样的:

                       image 

  倒三角形表示梯度,按这种方式来表示,θi就不见了,看看用好向量和矩阵,真的会大大的简化数学的描述啊。

 

 

 

 

 

 

误差准则函数与随机梯度下降

  数学一点将就是,对于给定的一个点集(X,Y),找到一条曲线或者曲面,对其进行拟合之。同时称X中的变量为特征(Feature),Y值为预测值。

  如图:

                      

  一个典型的机器学习的过程,首先给出一组输入数据X,我们的算法会通过一系列的过程得到一个估计的函数,这个函数有能力对没有见过的新数据给出一个新的估计Y,也被称为构建一个模型。

  我们用X1、X2...Xn 去描述feature里面的分量,用Y来描述我们的估计,得到一下模型:

                      

  我们需要一种机制去评价这个模型对数据的描述到底够不够准确,而采集的数据x、y通常来说是存在误差的(多数情况下误差服从高斯分布),于是,自然的,引入误差函数:

                      

  关键的一点是如何调整theta值,使误差函数J最小化。J函数构成一个曲面或者曲线,我们的目的是找到该曲面的最低点:

                  

  假设随机站在该曲面的一点,要以最快的速度到达最低点,我们当然会沿着坡度最大的方向往下走(梯度的反方向)。

  

  用数学描述就是一个求偏导数的过程:

                        

  这样,参数theta的更新过程描述为以下:

                                 (α表示算法的学习速率)

 

 

 

 

 

 

 

不同梯度下降算法的区别

 梯度下:全量梯度下降就是我上面的推导,要留意,在梯度下降中,对于θθ的更新,所有的样本都有贡献,也就是参与调整θθ.其计算得到的是一个标准梯度。因而理论上来说一次更新的幅度是比较大的。如果样本不多的情况下,当然是这样收敛的速度会更快啦。

  随机梯度下降:可以看到多了随机两个字,随机也就是说我用样本中的一个例子来近似我所有的样本,来调整θθ,因而随机梯度下降是会带来一定的问题,因为计算得到的并不是准确的一个梯度,容易陷入到局部最优解中。

  批量梯度下降:其实批量的梯度下降就是一种折中的方法,他用了一些小样本来近似全部的,其本质就是我1个指不定不太准,那我用个30个50个样本那比随机的要准不少了吧,而且批量的话还是非常可以反映样本的一个分布情况的。

   随机梯度下降和批量梯度下降都是梯度下降方法的一种,都是通过求偏导的方式求参数的最优解。

  批量梯度下降算法:是通过对每一个样本求偏导,然后挨个更新。(对于大样本的实验,这种方法效率太低)。

  而随机梯度下降算法则是从其中的所有样本中取出部分样本求偏导,对参数进行更新。

 

 

    众所周知,梯度下降算法是机器学习中使用非常广泛的优化算法,也是众多机器学习算法中最常用的优化方法。几乎当前每一个先进的(state-of-the-art)机器学习库或者深度学习库都会包括梯度下降算法的不同变种实现。但是,它们就像一个黑盒优化器,很难得到它们优缺点的实际解释。 

     梯度下降算法是通过沿着目标函数J(θ)参数θR的梯度(一阶导数)相反方向θJ(θ)来不断更新模型参数来到达目标函数的极小值点(收敛),更新步长为η

 

 

 

 

 

 

 

三种梯度下降优化框架

   有三种梯度下降算法框架,它们不同之处在于每次学习(更新模型参数)使用的样本个数,每次更新使用不同的样本会导致每次学习的准确性和学习时间不同。

   1、全量梯度下降(Batch gradient descent) 
   每次使用全量的训练集样本来更新模型参数,即: 

                   

   其Python代码如下:

for i in range(epochs):
    params_grad = evaluate_gradient(loss_function,data,params)
    params = params - learning_rate * params_grad

  epochs 是用户输入的最大迭代次数。通过上诉代码可以看出,每次使用全部训练集样本计算损失函数loss_function的梯度params_grad,然后使用学习速率learning_rate朝着梯度相反方向去更新模型的每个参数params。一般各现有的一些机器学习库都提供了梯度计算api。如果想自己亲手写代码计算,那么需要在程序调试过程中验证梯度计算是否正确。

  全量梯度下降每次学习都使用整个训练集,因此其优点在于每次更新都会朝着正确的方向进行,最后能够保证收敛于极值点(凸函数收敛于全局极值点,非凸函数可能会收敛于局部极值点),但是其缺点在于每次学习时间过长,并且如果训练集很大以至于需要消耗大量的内存,并且全量梯度下降不能进行在线模型参数更新。

 

 

 

 

 

  2、随机梯度下降(Stochastic gradient descent)

   随机梯度下降算法每次从训练集中随机选择一个样本来进行学习,即: 

                   

   批量梯度下降算法每次都会使用全部训练样本,因此这些计算是冗余的,因为每次都使用完全相同的样本集。而随机梯度下降算法每次只随机选择一个样本来更新模型参数,因此每次的学习是非常快速的,并且可以进行在线更新。 
   其Python代码如下:

for i in range(epochs):
    np.random.shuffle(data)
    for example in data:
        params_grad = evaluate_gradient(loss_function,example,params)
        params = params - learning_rate * params_grad

 

  随机梯度下降最大的缺点在于每次更新可能并不会按照正确的方向进行,因此可以带来优化波动(扰动),如下图:

                

 

 

   不过从另一个方面来看,随机梯度下降所带来的波动有个好处就是,对于类似盆地区域(即很多局部极小值点)那么这个波动的特点可能会使得优化的方向从当前的局部极小值点跳到另一个更好的局部极小值点,这样便可能对于非凸函数,最终收敛于一个较好的局部极值点,甚至全局极值点。 
   由于波动,因此会使得迭代次数(学习次数)增多,即收敛速度变慢。不过最终其会和全量梯度下降算法一样,具有相同的收敛性,即凸函数收敛于全局极值点,非凸损失函数收敛于局部极值点。

 

 

 

     

    通过随机梯度下降算法迭代形成的逻辑回归模型  和   通过随机梯度下降算法迭代形成的线性回归模型

  具体见

 

 

 

 

   具体,见

 

 

 

  

 

  具体,见

 

 

 

 

 

  3、小批量梯度下降算法(Mini-batch gradient descent)

   Mini-batch梯度下降综合了batch梯度下降与stochastic梯度下降,在每次更新速度与更新次数中间取得一个平衡,其每次更新从训练集中随机选择mn个样本进行学习,即: 

                       

 

   其Python代码如下:

for i in range(epochs):
    np.random.shuffle(data)
    for batch in get_batches(data, batch_size=50):
        params_grad = evaluate_gradient(loss_function,batch,params)
        params = params - learning_rate * params_grad

 

  相对于随机梯度下降算法,小批量梯度下降算法降低了收敛波动性,即降低了参数更新的方差,使得更新更加稳定。相对于全量梯度下降,其提高了每次学习的速度。并且其不用担心内存瓶颈从而可以利用矩阵运算进行高效计算。一般而言每次更新随机选择[50,256]个样本进行学习,但是也要根据具体问题而选择,实践中可以进行多次试验,选择一个更新速度与更次次数都较适合的样本数。

   mini-batch梯度下降虽然可以保证收敛性。mini-batch梯度下降常用于神经网络中。

 

 

 

 

 

梯度下降算法的问题与挑战

   虽然梯度下降算法效果很好,并且广泛使用,但同时其也存在一些挑战与问题需要解决:

  • 选择一个合理的学习速率很难。如果学习速率过小,则会导致收敛速度很慢。如果学习速率过大,那么其会阻碍收敛,即在极值点附近会振荡。

  • 学习速率调整(又称学习速率调度,Learning rate schedules试图在每次更新过程中,改变学习速率,如退火。一般使用某种事先设定的策略或者在每次迭代中衰减一个较小的阈值。无论哪种调整方法,都需要事先进行固定设置,这边便无法自适应每次学习的数据集特点。

  • 模型所有的参数每次更新都是使用相同的学习速率。如果数据特征是稀疏的或者每个特征有着不同的取值统计特征与空间,那么便不能在每次更新中每个参数使用相同的学习速率,那些很少出现的特征应该使用一个相对较大的学习速率。

  • 对于非凸目标函数,容易陷入那些次优的局部极值点中,如在神经网路中。那么如何避免呢。Dauphin指出更严重的问题不是局部极值点,而是鞍点(These saddle points are usually surrounded by a plateau of the same error, which makes it notoriously hard for SGD to escape, as the gradient is close to zero in all dimensions.)。

 

 

 

 

 

 

 

 

梯度下降优化算法

  下面将讨论一些在深度学习社区中经常使用用来解决上诉问题的一些梯度优化方法,不过并不包括在高维数据中不可行的算法,如牛顿法

  1、Momentum

   如果在峡谷地区(某些方向较另一些方向上陡峭得多,常见于局部极值点),SGD会在这些地方附近振荡,从而导致收敛速度慢。这种情况下,动量(Momentum)便可以解决。动量在参数更新项中加上一次更新量(即动量项),即: 

                      

 其中动量项超参数 γ<1 ,一般是小于等于0.9。

 

  其作用如下图所示: 

                       

                                图    没有动量 

 

 

 

                     

                               图    加上动量

   加上动量项就像从山顶滚下一个球,求往下滚的时候累积了前面的动量(动量不断增加),因此速度变得越来越快,直到到达终点。同理,在更新模型参数时,对于那些当前的梯度方向与上一次梯度方向相同的参数,那么进行加强,即这些方向上更快了;对于那些当前的梯度方向与上一次梯度方向不同的参数,那么进行削减,即这些方向上减慢了。因此可以获得更快的收敛速度与减少振荡。

 

 

 

 

  2、NAG

   从山顶往下滚的球会盲目地选择斜坡。更好的方式应该是在遇到倾斜向上之前应该减慢速度。 
   Nesterov accelerated gradient(NAG,涅斯捷罗夫梯度加速)不仅增加了动量项,并且在计算参数的梯度时,在损失函数中减去了动量项,即计算θJ(θγνt1),这种方式预估了下一次参数所在的位置。即: 

                      

 

 

 
  如下图所示: 

 

                              图   NAG更新

 

   详细介绍可以参见Ilya Sutskever的PhD论文。假设动量因子参数γ=0.9,首先计算当前梯度项,如上图小蓝色向量,然后加上动量项,这样便得到了大的跳跃,如上图大蓝色的向量。这便是只包含动量项的更新。而NAG首先来一个大的跳跃(动量项),然后加上一个小的使用了动量计算的当前梯度(上图红色向量)进行修正得到上图绿色的向量。这样可以阻止过快更新来提高响应性,如在RNNs中。 
   通过上面的两种方法,可以做到每次学习过程中能够根据损失函数的斜率做到自适应更新来加速SGD的收敛。下一步便需要对每个参数根据参数的重要性进行各自自适应更新。

 

 

 

  3、Adagrad

   Adagrad[3]也是一种基于梯度的优化算法,它能够对每个参数自适应不同的学习速率,对稀疏特征,得到大的学习更新,对非稀疏特征,得到较小的学习更新,因此该优化算法适合处理稀疏特征数据。Dean等发现Adagrad能够很好的提高SGD的鲁棒性,google便用起来训练大规模神经网络(看片识猫:recognize cats in Youtube videos)。Pennington等在GloVe中便使用Adagrad来训练得到词向量(Word Embeddings), 频繁出现的单词赋予较小的更新,不经常出现的单词则赋予较大的更新。 
   在前述中,每个模型参数θi使用相同的学习速率η,而Adagrad在每一个更新步骤中对于每一个模型参数θi使用不同的学习速率ηi,设第t次更新步骤中,目标函数的参数θi梯度为gt,i,即: 

                               

 

    那么SGD更新方程为: 

                             

 

 

  而Adagrad对每一个参数使用不同的学习速率,其更新方程为:

                        

 

    Adagrad主要优势在于它能够为每个参数自适应不同的学习速率,而一般的人工都是设定为0.01。同时其缺点在于需要计算参数梯度序列平方和,并且学习速率趋势是不断衰减最终达到一个非常小的值。下文中的Adadelta便是用来解决该问题的。

 

  ### Adadelta    Adadelta[[6]](#reference_6)是Adagrad的一种扩展,为了降低Adagrad中学习速率衰减过快问题,其改进了三处,一是使用了窗口w;二是对于参数梯度历史窗口序列(不包括当前)不再使用平方和,而是使用均值代替;三是最终的均值是历史窗口序列均值与当前梯度的时间衰减加权平均。即:

                        

 

   其中γ与动量项中的一样,都是

 

 

 

 

  RMSprop

   其实RMSprop是Adadelta的中间形式,也是为了降低Adagrad中学习速率衰减过快问题,即: 

                         

  Hinton建议γ=0.9,η=0.001

 

 

 

 

  Adam

   Adaptive Moment Estimation(Adam) 也是一种不同参数自适应不同学习速率方法,与Adadelta与RMSprop区别在于,它计算历史梯度衰减方式不同,不使用历史平方衰减,其衰减方式类似动量,如下:

                           

 

    mtvt分别是梯度的带权平均和带权有偏方差,初始为0向量,Adam的作者发现他们倾向于0向量(接近于0向量),特别是在衰减因子(衰减率)β1,β2接近于1时。为了改进这个问题,对mtvt进行偏差修正(bias-corrected): 

 

  论文中建议默认值:β1=0.9β2=0.999ϵ=108。论文中将Adam与其它的几个自适应学习速率进行了比较,效果均要好。

 

 

各优化方法比较

   下面两幅图可视化形象地比较上述各优化方法,详细参见这里,如图: 
          contours_evaluation_optimizers 
            图   SGD各优化方法在损失曲面上的表现

  

   从上图可以看出, Adagrad、Adadelta与RMSprop在损失曲面上能够立即转移到正确的移动方向上达到快速的收敛。而Momentum 与NAG会导致偏离(off-track)。同时NAG能够在偏离之后快速修正其路线,因为其根据梯度修正来提高响应性。 
            saddle_point_evaluation_optimizers 
                    图   SGD各优化方法在损失曲面鞍点处上的表现

 

   从上图可以看出,在鞍点(saddle points)处(即某些维度上梯度为零,某些维度上梯度不为零),SGD、Momentum与NAG一直在鞍点梯度为零的方向上振荡,很难打破鞍点位置的对称性;Adagrad、RMSprop与Adadelta能够很快地向梯度不为零的方向上转移。 
   从上面两幅图可以看出,自适应学习速率方法(Adagrad、Adadelta、RMSprop与Adam)在这些场景下具有更好的收敛速度与收敛性。

 

 

 

如何选择SGD优化器

   如果你的数据特征是稀疏的,那么你最好使用自适应学习速率SGD优化方法(Adagrad、Adadelta、RMSprop与Adam),因为你不需要在迭代过程中对学习速率进行人工调整。 
   RMSprop是Adagrad的一种扩展,与Adadelta类似,但是改进版的Adadelta使用RMS去自动更新学习速率,并且不需要设置初始学习速率。而Adam是在RMSprop基础上使用动量与偏差修正。RMSprop、Adadelta与Adam在类似的情形下的表现差不多。Kingma[15]指出收益于偏差修正,Adam略优于RMSprop,因为其在接近收敛时梯度变得更加稀疏。因此,Adam可能是目前最好的SGD优化方法。 
   有趣的是,最近很多论文都是使用原始的SGD梯度下降算法,并且使用简单的学习速率退火调整(无动量项)。现有的已经表明:SGD能够收敛于最小值点,但是相对于其他的SGD,它可能花费的时间更长,并且依赖于鲁棒的初始值以及学习速率退火调整策略,并且容易陷入局部极小值点,甚至鞍点。因此,如果你在意收敛速度或者训练一个深度或者复杂的网络,你应该选择一个自适应学习速率的SGD优化方法。

 

 

并行与分布式SGD

   如果你处理的数据集非常大,并且有机器集群可以利用,那么并行或分布式SGD是一个非常好的选择,因为可以大大地提高速度。SGD算法的本质决定其是串行的(step-by-step)。因此如何进行异步处理便是一个问题。虽然串行能够保证收敛,但是如果训练集大,速度便是一个瓶颈。如果进行异步更新,那么可能会导致不收敛。下面将讨论如何进行并行或分布式SGD,并行一般是指在同一机器上进行多核并行,分布式是指集群处理。

    • Hogwild 
         Niu[23]提出了被称为Hogwild的并行SGD方法。该方法在多个CPU时间进行并行。处理器通过共享内存来访问参数,并且这些参数不进行加锁。它为每一个cpu分配不重叠的一部分参数(分配互斥),每个cpu只更新其负责的参数。该方法只适合处理数据特征是稀疏的。该方法几乎可以达到一个最优的收敛速度,因为cpu之间不会进行相同信息重写。

    • Downpour SGD 
         Downpour SGD是Dean[4]提出的在DistBelief(Google TensorFlow的前身)使用的SGD的一个异步变种。它在训练子集上训练同时多个模型副本。这些副本将各自的更新发送到参数服务器(PS,parameter server),每个参数服务器只更新互斥的一部分参数,副本之间不会进行通信。因此可能会导致参数发散而不利于收敛。

    • Delay-tolerant Algorithms for SGD 
         McMahan与Streeter[12]扩展AdaGrad,通过开发延迟容忍算法(delay-tolerant algorithms),该算法不仅自适应过去梯度,并且会更新延迟。该方法已经在实践中表明是有效的。

    • TensorFlow 
         TensorFlow[13]是Google开源的一个大规模机器学习库,它的前身是DistBelief。它已经在大量移动设备上或者大规模分布式集群中使用了,已经经过了实践检验。其分布式实现是基于图计算,它将图分割成多个子图,每个计算实体作为图中的一个计算节点,他们通过Rend/Receive来进行通信。具体参见这里

    • Elastic Averaging SGD 
         Zhang等[14]提出Elastic Averaging SGD(EASGD),它通过一个elastic force(存储参数的参数服务器中心)来连接每个work来进行参数异步更新。This allows the local variables to fluctuate further from the center variable, which in theory allows for more exploration of the parameter space. They show empirically that this increased capacity for exploration leads to improved performance by finding new local optima. 这句话不太懂,需要去看论文。

 

 

 

 

更多的SGD优化策略

   接下来介绍更多的SGD优化策略来进一步提高SGD的性能。另外还有众多其它的优化策略,可以参见[22]

  • Shuffling and Curriculum Learning 
       为了使得学习过程更加无偏,应该在每次迭代中随机打乱训练集中的样本。 
       另一方面,在很多情况下,我们是逐步解决问题的,而将训练集按照某个有意义的顺序排列会提高模型的性能和SGD的收敛性,如何将训练集建立一个有意义的排列被称为Curriculum Learning[16]。 
       Zaremba与Sutskever[17]在使用Curriculum Learning来训练LSTMs以解决一些简单的问题中,表明一个相结合的策略或者混合策略比对训练集按照按照训练难度进行递增排序要好。(表示不懂,衰)

  • Batch normalization 
       为了方便训练,我们通常会对参数按照0均值1方差进行初始化,随着不断训练,参数得到不同程度的更新,这样这些参数会失去0均值1方差的分布属性,这样会降低训练速度和放大参数变化随着网络结构的加深。 
       Batch normalization[18]在每次mini-batch反向传播之后重新对参数进行0均值1方差标准化。这样可以使用更大的学习速率,以及花费更少的精力在参数初始化点上。Batch normalization充当着正则化、减少甚至消除掉Dropout的必要性。

  • Early stopping 
       在验证集上如果连续的多次迭代过程中损失函数不再显著地降低,那么应该提前结束训练,详细参见NIPS 2015 Tutorial slides,或者参见防止过拟合的一些方法

  • Gradient noise 
       Gradient noise[21]即在每次迭代计算梯度中加上一个高斯分布N(0,σ2t)的随机误差,即 

    gt,i=gt,i+N(0,σ2t)

       高斯误差的方差需要进行退火: 
    σ2t=η(1+t)γ

       对梯度增加随机误差会增加模型的鲁棒性,即使初始参数值选择地不好,并适合对特别深层次的负责的网络进行训练。其原因在于增加随机噪声会有更多的可能性跳过局部极值点并去寻找一个更好的局部极值点,这种可能性在深层次的网络中更常见。

     

总结

   在上文中,对梯度下降算法的三种框架进行了介绍,并且mini-batch梯度下降是使用最广泛的。随后,我们重点介绍了SGD的一些优化方法:Momentum、NAG、Adagrad、Adadelta、RMSprop与Adam,以及一些异步SGD方法。最后,介绍了一些提高SGD性能的其它优化建议,如:训练集随机洗牌与课程学习(shuffling and curriculum learning)、batch normalization,、early stopping与Gradient noise。 
   希望这篇文章能给你提供一些关于如何使用不同的梯度优化算法方面的指导。如果还有更多的优化建议或方法还望大家提出来?或者你使用什么技巧和方法来更好地训练SGD可以一起交流?Thanks。

分类:

技术点:

相关文章: