wufengtinghai

一、拉格朗日乘数法简介

在日常的生产生活中,当我们要要安排生产生活计划的时候,常常会在现实物理资源约束的条件下,计算得到收益最大或者损失最小的计划; 像这种对自变量有附加条件的极值称为条件极值;拉格朗日乘数法是一种直接计算解决条件极值的方法;

拉格朗日乘数法的定义如下:

设有 \(f(x, y), \varphi(x,y)\) 两个函数,并且两者都有一阶连续偏导数,则做拉格朗日函数为

\[F(x, y, \lambda) = f(x, y) + \lambda \varphi(x,y) \]

令函数F的各个偏导数 \(F_{x} = 0, F_{y} = 0, F_{λ} = 0\),计算各个偏导数并联立方程得到

\[\left\{\begin{matrix} f_{x}(x,y) + \lambda \varphi_{x}(x,y)=0 \\ f_{y}(x,y) + \lambda \varphi_{y}(x,y)=0 \\ \varphi(x,y)=0 \end{matrix}\right. \]

由此方程组解出拉格朗日函数稳定点 \((x_{0},y_{0},λ_{0})\),则 \((x_{0},y_{0})\) 就是函数 \(f(x, y)\) 在附加条件 \(\varphi(x,y)=0\) 下的可能极值点;

二、拉格朗日乘数法的推导

目标函数

\[\begin{equation} f(x, y) = 0 \end{equation} \]

约束条件

\[\begin{equation} \varphi(x,y) = 0 \end{equation} \]

如果函数(1)在点 $ (x_{0}, y_{0}) $ 得到极值,那么首先会满足约束条件

\[\begin{equation} \varphi(x_{0},y_{0}) = 0 \end{equation} \]

\(f(x, y)\)\(\varphi(x,y)\)在点 \((x_{0}, y_{0})\) 的某个邻域内有连续偏导数,且满足

\[\varphi_{y}(x_{0},y_{0}) \ne 0 \]

由隐函数存在定理,式(2)在点 $(x_{0}, y_{0}) $ 的某邻域内能唯一确定一个单值可导且具有连续导数的函数 \(y=y(x)\) ,并且有 \(y_{0}=f(x_{0})\),以及

\[\begin{equation} \left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{0}}=-\frac{\varphi_{x}\left(x_{0}, y_{0}\right)}{\varphi_{y}\left(x_{0}, y_{0}\right)} \end{equation} \]

\(y=y(x)\) 带入公式(1)得到

\[\begin{equation} z = f(x, y(x)) \end{equation} \]

公式(5)也同公式(1)在 $(x_{0}, y_{0}) $ 处取的极值,有一元函数取得极值的必要条件可得

\[\begin{equation} \left.\frac{\mathrm{d} z}{\mathrm{~d} x}\right|_{x=x_{0}}=f_{x}\left(x_{0}, y_{0}\right)+\left.f_{y}\left(x_{0}, y_{0}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=x_{0}}=0 \end{equation} \]

将公式(4)带入公式(6)得到

\[\begin{equation} f_{x}\left(x_{0}, y_{0}\right)-f_{y}\left(x_{0}, y_{0}\right) \cdot \frac{\varphi_{x}\left(x_{0}, y_{0}\right)}{\varphi_{y}\left(x_{0}, y_{0}\right)}=0 \end{equation} \]

为了解出 $(x_{0}, y_{0}) $ ,引入辅助变量

\[\lambda_{0}=-\frac{f_{y}\left(x_{0}, y_{0}\right)}{\varphi_{y}\left(x_{0}, y_{0}\right)} \]

则公式(3)和公式(7)均成立等价于

\[\begin{equation} \left\{\begin{array}{l} f_{x}\left(x_{0}, y_{0}\right)+\lambda_{0} \varphi_{x}\left(x_{0}, y_{0}\right)=0 \\ f_{y}\left(x_{0}, y_{0}\right)+\lambda_{0} \varphi_{y}\left(x_{0}, y_{0}\right)=0 \\ \varphi\left(x_{0}, y_{0}\right)=0 \end{array}\right. \end{equation} \]

\(f(x, y), \varphi(x,y)\) 给定的前提下,我们可以通过公式(8)计算得到 \((x_{0}, y_{0}, \lambda_{0})\) ,我们可根据公式(8)的特点构造以下函数

\[F(x, y, \lambda)=f(x, y)+\lambda \phi(x, y) \]

可以看到公式(8)等价 \(F(x, y, \lambda)\) 的以下偏导数

\[\left\{\begin{array}{l} F_{x}\left(x_{0}, y_{0}, \lambda_{0}\right)=0 \\ F_{y}\left(x_{0}, y_{0}, \lambda_{0}\right)=0 \\ F_{\lambda}\left(x_{0}, y_{0}, \lambda_{0}\right)=0 \end{array}\right. \]

通过以上推演过程,函数 \(F(x, y, \lambda)\) 称为拉格朗日函数,参数λ称为拉格朗日乘数,点 \((x_{0}, y_{0}, \lambda_{0})\) 称为 \(F(x, y, \lambda)\) 的驻点或稳定点.

相关文章: